
UCSD CSE 272 Assignment 1:

Disney Principled BSDF

Figure 1: Disney principled BSDF [1, 2] is a Uber shader that can express a very wide range of materials.

In this homework, we will implement a Bidirectional Scattering Distribution Function, called the Disney
principled BSDF (Figure 1), in lajolla. Disney principled BSDF is an attempt to have a one-size-fits-all
solution to cover most common materials using a single BSDF. It is principled since it is (mostly) based
on physical principles and observations from measured data [7]. However, physical correctness is not the
utmost priority of the BSDF: it is a useful guideline for parameterizing the space of plausible materials
for artistic expression. Ultimately, Disney BSDF is for making visual effects: as long as it makes graphics
artists express what they want with the least effort, it achieves its goal. Disney BSDF has been extremely
influential since its inception in 2012. Nowadays, many commercial and non-commercial rendering engines
feature a similar material: Blender’s principled BSDF, Autodesk’s Standard Surface, Unreal Engine 4’s
physically-based materials, Substance’s physically-based shaders, and Appleseed standard surface, are all
heavily inspired, if not directly borrowed from the Disney BSDF.

We will implement the Disney BSDF with slight simplifications: first, we won’t implement the full volu-
metric absorption/scattering model (we will implement something similar in the next homework!). Second,
we remove a sheen transmissive lobe to make sampling easier. Finally, we do not implement the thin BSDF
model. When implementing the BSDF, feel free to reference code from the internet. However, be aware
that due to the ambiguity in the Disney course note, all implementations I found are slightly different from

1

https://docs.blender.org/manual/en/latest/render/shader_nodes/shader/principled.html
https://autodesk.github.io/standard-surface/
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/Materials/PhysicallyBased/
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/Materials/PhysicallyBased/
https://substance3d.adobe.com/tutorials/courses/the-pbr-guide-part-1
https://appleseed.readthedocs.io/projects/appleseed-maya/en/master/shaders/material/as_standard_surface.html

each other, and some are flat out wrong.1 I found the following links to be useful: the official implementa-
tion of the BRDF (lacks the transmission component and no sampling procedures), pbrt’s implementation,
Joe Schutte’s walkthrough, a GLSL implementation, and Blender’s open shading language implementation.
The model we will implement is the closest to Blender’s version. You should also read Burley’s notes and
presentations.2

A Disney BSDF is made of five components: a diffuse lobe that captures the base diffusive color of the
surface, a metallic lobe that features major specular highlights, a clearcoat lobe that models the heavy tails
of the specularity, a sheen lobe that addresses retroreflection, and a glass lobe that handles transmission.
We will first implement each individual component; then we will combine all of them into a single material.

Submission and grading. Please upload a zip file to Canvas including your code, and a text file
(readme.txt) answering the questions below. We will grade your code by comparing individual ray queries
with our reference code for the BSDF evaluation, we will check if your sampling code is consistent with the
PDF, and we will eyeball your rendering to make sure everything looks fine. For the questions, as long as
you say something plausible, you will get full scores.

Notation and convention. In the following, ωin is the incoming direction of the BSDF (usually represent
the view direction), and ωout is the outgoing direction of the BSDF (usually represent the light direction),
both pointing outwards from the surface. n is the shading normal, ng is the geometry normal, h is the half-
vector h = ωin+ωout

‖ωin+ωout‖ . All of our BSDF include the cosine term |n ·ωout|. η is the ratio of index of refraction

of the medium below divided by the medium above the surface IORinternal

IORexternal
. All parameters of Disney BSDF

are normalized within [0, 1], except for the index of refraction whose acceptable range is [1, 2].

Variant-based material systems. As mentioned in homework 0, lajolla applies variant-based polymor-
phism instead of object-oriented polymorphism. The material structs in lajolla looks like the following:

struct DisneyDiffuse {

Texture<Spectrum> base_color;

Texture<Real> roughness;

Texture<Real> subsurface;

};

They are aggregated to a Material type using variant.

using Material = std::variant<Lambertian,

RoughPlastic,

RoughDielectric,

DisneyDiffuse,

DisneyMetal,

DisneyGlass,

DisneyClearcoat,

DisneySheen,

DisneyBSDF>;

Each material needs to implement the following operators:

struct eval_op {

Spectrum operator()(const Lambertian &bsdf) const;

Spectrum operator()(const RoughPlastic &bsdf) const;

Spectrum operator()(const RoughDielectric &bsdf) const;

Spectrum operator()(const DisneyDiffuse &bsdf) const;

// ...

1Even the implementation in pbrt appears to be wrong. See here.
2https://blog.selfshadow.com/publications/s2012-shading-course/ and https://blog.selfshadow.com/

publications/s2015-shading-course/

2

https://github.com/wdas/brdf/blob/main/src/brdfs/disney.brdf
https://github.com/wdas/brdf/blob/main/src/brdfs/disney.brdf
https://github.com/mmp/pbrt-v3/blob/master/src/materials/disney.cpp
https://schuttejoe.github.io/post/disneybsdf/
https://github.com/knightcrawler25/GLSL-PathTracer/blob/master/src/shaders/common/disney.glsl
https://github.com/dfelinto/blender/blob/master/intern/cycles/kernel/shaders/node_principled_bsdf.osl
https://github.com/mmp/pbrt-v3/issues/313
https://blog.selfshadow.com/publications/s2012-shading-course/
https://blog.selfshadow.com/publications/s2015-shading-course/
https://blog.selfshadow.com/publications/s2015-shading-course/

const Vector3 &dir_in;

const Vector3 &dir_out;

const PathVertex &vertex;

const TexturePool &texture_pool;

const TransportDirection &dir;

};

struct pdf_sample_bsdf_op {

Real operator()(const Lambertian &bsdf) const;

Real operator()(const RoughPlastic &bsdf) const;

Real operator()(const RoughDielectric &bsdf) const;

Real operator()(const DisneyDiffuse &bsdf) const;

// ...

const Vector3 &dir_in;

const Vector3 &dir_out;

const PathVertex &vertex;

const TexturePool &texture_pool;

const TransportDirection &dir;

};

struct sample_bsdf_op {

std::optional<BSDFSampleRecord> operator()(const Lambertian &bsdf) const;

std::optional<BSDFSampleRecord> operator()(const RoughPlastic &bsdf) const;

std::optional<BSDFSampleRecord> operator()(const RoughDielectric &bsdf) const;

std::optional<BSDFSampleRecord> operator()(const DisneyDiffuse &bsdf) const;

// ...

const Vector3 &dir_in;

const PathVertex &vertex;

const TexturePool &texture_pool;

const Vector2 &rnd_param_uv;

const Real &rnd_param_w;

const TransportDirection &dir;

};

1 Diffuse

By looking at the MERL measured BRDF [7], Burley found that at grazing retroreflection (when the half
vector is roughly orthogonal to the normal), smooth materials (materials that are more specular) tend to
have their reflectance dropped, and rough materials tend to have a peak at the grazing angle. The dropped
reflectance can be predicted by Fresnel reflection: at grazing angles, (dielectric) Fresnel equation predicts
low transmittance, and fewer lights are scattered inside the surfaces and thus less diffusion. Thus they design
the following diffuse BRDF based on a modified version of the Schlick Fresnel approximation [8]:

fbaseDiffuse =
baseColor

π
FD(ωin)FD(ωout)|n · ωout|, (1)

where
FD(ω) =

(
1 + (FD90 − 1)(1− |n · ω|)5

)
FD90 =

1

2
+ 2 · roughness · |h · ωout|2.

(2)

When roughness = 0 (smooth materials), at grazing view angle |n ·ωin| ≈ 0, and at grazing lighting angle
|n · ωout| ≈ 0, thus the BSDF attenuates the diffuse response by a factor of 1

2 for each FD term (modelling
the Fresnel reflection). At high roughness (roughness ≈ 1), at retroreflection, ωout ≈ ωin, thus h · ωout ≈ 1,

3

Figure 2: Diffuse component of the Disney BSDF.

and the BSDF reproduces the peak retroreflection observed in the MERL data by multiplying 2.5 for each
FD term.

In addition to the base diffuse model, the diffuse component of Disney BSDF also blends it with a
subsurface scattering lobe for surfaces with strong multiple scattering inside like skin, milk, or marble. In
the 2015 version of the Disney BSDF, they simulate real subsurface scattering that requires volumetric path
tracing to simulate the scattering, but this is too much work for the first homework. Instead, we follow the
2012 version and use a BRDF approximation of the subsurface scattering by modifying the Lommel-Seeliger
law:

fsubsurface =
1.25baseColor

π

(
FSS(ωin)FSS(ωout)

(
1

|n · ωin|+ |n · ωout|
− 0.5

)
+ 0.5

)
|n · ωout|, (3)

where
FSS(ω) =

(
1 + (FSS90 − 1)(1− |n · ω|)5

)
FSS90 = roughness · |h · ωout|2.

(4)

See here for a nice sketch of derivation of the Lommel-Seeliger law (brought to graphics by Hanrahan
and Kruger [4]). The 1

|n·ωin|+|n·ωout| term models the volumetric absorption of the scattering media below

the surface.
The final diffuse BRDF is:

fdiffuse = (1− subsurface) · fbaseDiffuse + subsurface · fsubsurface, (5)

where subsurface is a parameter.
Note that the physical model here is a dielectric coating on top of a diffusive scattering media (similar

to the roughplastic material in lajolla/Mitsuba), but fdiffuse does not model the specular reflection of the
dielectric coating. We will include the specular reflection in the final assembly.

Task (10%). You will implement the DisneyDiffuse BRDF (Equation 5)

// in material.h

struct DisneyDiffuse {

Texture<Spectrum> base_color;

Texture<Real> roughness;

Texture<Real> subsurface;

};

You need to implement the following three functions in materials/disney_diffuse.inl:

4

https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Book%3A_Planetary_Photometry_(Tatum_and_Fairbairn)/03%3A_A_Brief_History_of_the_Lommel-Seeliger_Law/3.01%3A_A_Brief_History_of_the_Lommel-Seeliger_Law#:~:text=Description.,physical%20model%20of%20diffuse%20reflection.&text=Thus%2C%20of%20this%20diffuse%20scattered,emerging%20as%20diffuse%20reflected%20radiation.

Figure 3: Metal component of the Disney BSDF.

Spectrum eval_op::operator()(const DisneyDiffuse &bsdf) const;

Real pdf_sample_bsdf_op::operator()(const DisneyDiffuse &bsdf) const;

std::optional<BSDFSampleRecord> sample_bsdf_op::operator()(const DisneyDiffuse &bsdf) const;

For sampling, we will simply use a cosine hemisphere sampling. Look at materials/lambertian.inl to
see how it is done. Feel free to copy-paste the code and modify anything. Also notice how the Lambertian
BRDF implementation handles the discrepancy between geometry normals and shading normals.

Try out the scene scenes/disney_bsdf_test/simple_sphere.xml (you’ll need to modify the scene file to
use the DisneyDiffuse material) and scenes/disney_bsdf_test/disney_diffuse.xml to see how the material
look like. Play with the parameters.

Questions (5%). Answer these questions in a text file:

1. Compare the two BRDFs with a Lambertian BRDF: what differences do you see? Why?

2. Compare the base diffuse BRDF (fbaseDiffuse) with the subsurface BRDF (fsubsurface) by playing with
the subsurface parameter. What differences do you see? Why? In what lighting condition does
the base diffuse BRDF differ the most from the subsurface BRDF? (Play with the light position in
simple_sphere.xml for your experimentation)

2 Metal

For specular reflection, Burley uses a standard Cook-Torrance microfacet BRDF [3]:

fmetal =
FmDmGm
4|n · ωin|

, 3 (6)

where Fm is the Fresnel reflection, Dm is the probability density of the distribution of a microfacet normal,
and Gm is the masking-shadowing term [5] that models the occlusion between microfacets.

For the Fresnel term Fm, Burley uses the Schlick approximation:

Fm = baseColor + (1− baseColor)(1− |h · ωout|)5. (7)

Note that the Fresnel term depends on the micronormal h = ωin+ωout

|ωin+ωout| instead of the macro shading normal

n. The reason why they use an approximation instead of the true Fresnel equation is not just for the

3The |n · ωout| term in the denominator cancels out with the cosine.

5

performance. For metallic surfaces, or conductors, Fresnel equation requires us to have the complex index
of refraction of the conductor for each wavelength. This parameter is not only unintuitive, but nor is it
physically accurate when we only consider the RGB spectrum.4

For the normal distribution function Dm, Burley uses the anisotropic Trowbridge-Reitz distribution [9],
popularized by Walter et al. [10] in graphics and it is known as GGX (Ground Glass X):

Dm =
1

παxαy

(
hl
x
2

α2
x

+
hl
y
2

α2
y

+ hlz
2
)2 , (8)

where hl is the half-vector projected to the local shading frame. Physically, this models the distribution of
the normals of an ellipsoid. Trowbridge-Reitz distribution was found to be fitting the MERL measured data
excellently thanks to its heavy tails compared to a Gaussian or a cosine (some materials have even longer
tails, and those will be modeled by the clearcoat component later).

αx, αy are parameters for modeling the smoothness of the material. If we directly use these parameters,
we need very small α to represent highly specular materials. Burley found that the following mapping is
more intuitive:

aspect =
√

1− 0.9anisotropic

αx = max(αmin, roughness2/aspect)

αy = max(αmin, roughness2 · aspect)

, (9)

where anisotropic and roughness are the parameters, and αmin = 0.0001.
Given a normal distribution function and a microfacet configuration, it is possible to derive the average

occlusion factor Gm given a viewing angle [5]. Burley uses the Smith model, which enables a closed-form
solution under the assumption that all the microfacets are independently oriented:

Gm = G(ωin)G(ωout)

G(ω) =
1

1 + Λ(ω)

Λ(ω) =

√
1 +

(ωl.x·αx)2+(ωl.y·αy)2

ωl.z2
− 1

2

. (10)

Combining all of these, and you will get a nice metallic BRDF.

Task (10%). You will implement the DisneyMetal BRDF (Equation 6)

// in material.h

struct DisneyMetal {

Texture<Spectrum> base_color;

Texture<Real> roughness;

Texture<Real> anisotropic;

};

You need to implement the following three functions in materials/disney_metal.inl:

Spectrum eval_op::operator()(const DisneyMetal &bsdf) const;

Real pdf_sample_bsdf_op::operator()(const DisneyMetal &bsdf) const;

std::optional<BSDFSampleRecord> sample_bsdf_op::operator()(const DisneyMetal &bsdf) const;

For sampling, we will use the visible normal sampling developed by Heitz [6], which importance samples
DmG(ωin)

4|n·ωin| . See Heitz’s presentation slides for a really nice illustration of the method. This sampling is also

used in the roughplastic material in lajolla, so you might want to look at it as well.
Try out the scene scenes/disney_bsdf_test/simple_sphere.xml and the scene scenes/disney_bsdf_test/disney_metal.xml

to see how the material look like. Play with the parameters.

4See “Fresnel Equations Considered Harmful” by Naty Hoffman. Here is his presentation video.

6

https://jcgt.org/published/0007/04/01/slides.pdf
http://renderwonk.com/publications/mam2019/
https://www.youtube.com/watch?v=kEcDbl7eS0w

Figure 4: Clearcoat component of the Disney BSDF.

Questions (5%). Answer these question(s) in a text file:

1. Compare DisneyMetal with the roughplastic material. What differences do you see?

2. Change the roughness parameters. Apart from how specular the surface it, do you observe any other
differences?

3 Clearcoat

Burley found that the Trowbridge-Reitz distribution used by the metallic component above, while already
having a wide tail comparing to most other normal distribution functions, is still not wide enough. Therefore
they propose to have another achromatic specular component with a modified normal distribution function:

fclearcoat =
FcDcGc
4|n · ωin|

, (11)

where
Fc = R0(η = 1.5) + (1−R0(η = 1.5)) (1− |h · ωout|)5

Dc =
α2
g − 1

π log(α2
g)
(

1 + (α2
g − 1) (hlz)

2
)

Gc = Gc(ωin)Gc(ωout)

Gc(ω) =
1

1 + Λc(ω)

Λc(ω) =

√
1 + (ωl.x·0.25)2+(ωl.y·0.25)2

ωl.z2
− 1

2

. (12)

The Schlick Fresnel Fc has a hard-coded index of refraction η = 1.5. The normal distribution function Dc

uses an isotropic roughness α = αg. The masking-shadowing term Gc uses a fixed roughness 0.25. Note that
this is an ad-hoc fit, and there is no clear geometric meaning of this microfacet BRDF.

The Schlick approximation maps the index of refraction η to R0 with the following equation:

R0(η) =
(η − 1)

2

(η + 1)
2 (13)

The αg parameter is mapped to a parameter clearcoatGloss with the following equation:

αg = (1− clearcoatGloss) · 0.1 + clearcoatGloss · 0.001. (14)

7

The higher the clearcoatGloss, the lower the αg.

Task (10%). You will implement the DisneyClearcoat BRDF (Equation 11)

// in material.h

struct DisneyClearcoat {

Texture<Real> clearcoat_gloss;

};

You need to implement the following three functions in materials/disney_clearcoat.inl:

Spectrum eval_op::operator()(const DisneyClearcoat &bsdf) const;

Real pdf_sample_bsdf_op::operator()(const DisneyClearcoat &bsdf) const;

std::optional<BSDFSampleRecord> sample_bsdf_op::operator()(const DisneyClearcoat &bsdf) const;

For sampling, there is no known visible normal sampling for this BRDF (since it does not correspond

to a meaningful physical configuration). We will importance sample Dc|n·h|
4|h·ωout| by choosing a micro normal

proportional to Dc then reflect the incoming direction. To sample a normal hl in the local shading frame
using a 2D random number (u0, u1):

cos(helevation) =

√
1− (α2)

1−u0

1− α2

hazimuth = 2πu1

hlx = sin(helevation) cos(hazimuth)

hly = sin(helevation) sin(hazimuth)

hlz = cos(helevation)

. (15)

Try out the scene scenes/disney_bsdf_test/simple_sphere.xml and the scene scenes/disney_bsdf_test/disney_clearcoat.xml

to see how the material look like. Play with the parameters.

Questions (5%). Answer these question(s) in a text file:

1. Compare DisneyClearcoat with DisneyMetal using similar roughness. What differences do you see?

4 Glass

The 2012 version of the Disney BRDF did not support glasses. In the 2015 version, Burley added a dielectric
lobe that is both transmissive and reflective using a standard microfacet-based refraction model [10]:

fglass =

{baseColorFgDgGg

4|n·ωin| if (ng · ωin) (ng · ωout) > 0
√

baseColor(1−Fg)DgGg|h·ωouth·ωin|
|n·ωin|(h·ωin+ηh·ωout)

2 otherwise
(16)

Note that for the refractive case (the second case), the color is taken square root for albedo preservation:
a ray can refract twice inside an object.

For the Fresnel Fg, Burley found that the Schlick approximation was very inaccurate for η ≈ 1 (up to
40× brighter than actual Fresnel), and decided to use the actual Fresnel equation for the dielectric materials.
Unlike conductors, the Fresnel reflection for dielectric materials does not require complex indices of refraction
and is much more intuitive to control. For completeness, the Fresnel equation is:

Fg =
1

2

(
R2
s +R2

p

)
Rs =

h · ωin − ηh · ωout

h · ωin + ηh · ωout

Rp =
ηh · ωin − h · ωout

ηh · ωin + h · ωout

(17)

8

Figure 5: Glass component of the Disney BSDF.

again, note that we use the half-vector h instead of the normal n, due to the microfacet assumption.
Sometimes we need to compute the Fresnel term solely using either the incoming direction or the outgoing

direction. This can be done by using the Snell-Descartes law to convert n · ω to the other one.
The normal distribution function Dg and the masking-shadowing term Gg are the same as the metal

case.

Task (10%). You will implement the DisneyGlass BRDF (Equation 16)

// in material.h

struct DisneyGlass {

Texture<Spectrum> base_color;

Texture<Real> roughness;

Texture<Real> anisotropic;

Real eta; // internal IOR / externalIOR

};

You need to implement the following three functions in materials/disney_glass.inl:

Spectrum eval_op::operator()(const DisneyGlass &bsdf) const;

Real pdf_sample_bsdf_op::operator()(const DisneyGlass &bsdf) const;

std::optional<BSDFSampleRecord> sample_bsdf_op::operator()(const DisneyGlass &bsdf) const;

Lajolla already has an implementation of a dielectric glass in roughdielectric. The only two differences
are 1) the reflectance/transmittance color are handled differently and 2) the BSDF in roughdielectric is
isotropic. I suggest you start by copy-pasting or referencing the code from roughdielectric and modify it.

Try out the scene scenes/disney_bsdf_test/disney_glass.xml to see how the material look like. Play
with the parameters.

Questions (5%). Answer these question(s) in a text file:

1. Play with the index of refraction parameter η (the physically plausible range is [1, 2]). How does it
affect appearance?

2. (Optional, not graded) Replace the dielectric Fresnel equation with a Schlick approximation (see Bur-
ley’s course notes [2] on the fix to the Schlick approximation to make it work for η < 1). Do you
observe any differences when η = 1.5? What about η = 1.01?

9

Figure 6: Sheen component of the Disney BSDF.

5 Sheen

Materials such as clothes often exhibit strong responses at grazing angles. To compensate for this, Burley
adds another component called the sheen BRDF. Anything related to grazing angles can be done by hacking
the Fresnel response (just like fdiffuse). The sheen BRDF is again a modified Schlick Fresnel:

fsheen = Csheen(1− |h · ωout|)5|n · ωout|
Csheen = (1− sheenTint) + sheenTint · Ctint

Ctint = baseColor/luminance(baseColor) if luminance(baseColor) > 0 else 1

. (18)

Here the color Csheen is a blending between the hue and saturation of the base color and white color based
on the parameter sheenTint. Physical-wise, specular reflection caused by a dielectric material is usually
achromatic when the index of refraction is the same across different wavelengths (and it often is). However,
sheen is a BSDF for modeling strong retroreflection from clothes that are caused by the mesostructure of
the cloth – a much more complicated phenomonon. It is thus the best to give artists control here for how
achromatic they want the retroreflection to be.

In the 2015 version of the Disney BSDF, the sheen component is applied for both the reflection and
transmission. We only apply the sheen for the reflection here, since it is easier to sample and code.

Task (10%). You will implement the DisneySheen BRDF (Equation 18)

// in material.h

struct DisneySheen {

Texture<Spectrum> base_color;

Texture<Real> sheen_tint;

};

You need to implement the following three functions in materials/disney_sheen.inl:

Spectrum eval_op::operator()(const DisneySheen &bsdf) const;

Real pdf_sample_bsdf_op::operator()(const DisneySheen &bsdf) const;

std::optional<BSDFSampleRecord> sample_bsdf_op::operator()(const DisneySheen &bsdf) const;

For sampling we will simply apply a cosine hemisphere sampling.
Try out scenes/disney_bsdf_test/simple_sphere.xml and scenes/disney_bsdf_test/disney_sheen.xml to

see how the material look like. Play with the parameters.

10

Questions (5%). Answer these question(s) in a text file:

1. Render the simple_sphere scene with the sheen BRDF. What do you see? Why? What happens if you
change the position of the light source?

6 Putting everything together

Finally, we combine the five components we have and weigh them to get our final BSDF:

fdisney =(1− specularTransmission) · (1−metallic) · fdiffuse+

(1−metallic) · sheen · fsheen+

(1− specularTransmission · (1−metallic)) · f̂metal+

0.25 · clearcoat · fclearcoat+

(1−metallic) · specularTransmission · fglass

(19)

We need to modify the metal BRDF f̂metal a bit: recall that our diffuse material is missing a dielectric
specular reflection. We include that in our metal BRDF. To do this, we modify the Fresnel term Fm to
include an achromatic specular component, with a control parameter specularTint to potentially make it
closer to the base color:

F̂m = C0 + (1− C0) (1− (h · ωout))
5

C0 = specular ·R0(η)(1−metallic)Ks + metallic · baseColor

Ks = (1− specularTint) + specularTint · Ctint

(20)

One complication when combining the glass BSDF and other BRDFs is that now we need to define the
behavior of the BRDF when the ray is inside the object. The Disney BSDF technical notes do not specify
this. Experiments show that removing all lobes except for the glass lobe when ray is inside the object (note
that the glass still reflect inside the object) gives more visually pleasing results. Therefore we define:

fdiffuse = 0 if ωin · ng ≤ 0

fmetal = 0 if ωin · ng ≤ 0

fclearcoat = 0 if ωin · ng ≤ 0

fsheen = 0 if ωin · ng ≤ 0

. (21)

Task (20%). You will implement DisneyBSDF (Equation 19)

// in material.h

struct DisneyBSDF {

Texture<Spectrum> base_color;

Texture<Real> specular_transmission;

Texture<Real> metallic;

Texture<Real> subsurface;

Texture<Real> specular;

Texture<Real> roughness;

Texture<Real> specular_tint;

Texture<Real> anisotropic;

Texture<Real> sheen;

Texture<Real> sheen_tint;

Texture<Real> clearcoat;

Texture<Real> clearcoat_gloss;

Real eta;

};

11

https://github.com/mmp/pbrt-v3/issues/313

You need to implement the following three functions in materials/disney_bsdf.inl:

Spectrum eval_op::operator()(const DisneyBSDF &bsdf) const;

Real pdf_sample_bsdf_op::operator()(const DisneyBSDF &bsdf) const;

std::optional<BSDFSampleRecord> sample_bsdf_op::operator()(const DisneyBSDF &bsdf) const;

For importance sampling, ignore the sheen component since it is relatively weak compared to other lobes.
Randomly choose between a diffuse lobe, a metal lobe, a clearcoat lobe, and the glass lobes based on the
following weights:

diffuseWeight = (1−metallic) · (1− specularTransmission)

metalWeight = (1− specularTransmission · (1−metallic))

glassWeight = (1−metallic) · specularTransmission

clearcoatWeight = 0.25 · clearcoat

(22)

However, when the ray is from inside the object (ωin · ng ≤ 0), we set all weights to 0 and only leave the
glass lobes (note that glass still both reflect and refract).

When implementing, add one component at a time. Don’t rush and put everything in there at once. Do
sanity check with only enabling one component at a time. Note that even if everything other than the base
color is set to zero, there is still a specular component from the dielectric specular response of the modified
metal lobe.

Also recall from homework 0: you might need to rescale your random number w for selecting reflec-
tion/refraction.

Try out the scene scenes/disney_bsdf_test/disney_bsdf.xml to see how the material look like. Play with
the parameters.

Task (5%). Render an image that is not in the test scenes with your Disney BSDF! Play with textures
and geometry to make it look interesting. Have fun!

References

[1] Brent Burley. Physically-based shading at Disney. In SIGGRAPH Course, 2012.

[2] Brent Burley. Extending the Disney BRDF to a BSDF with integrated subsurface scattering. SIG-
GRAPH Course, 19, 2015.

[3] R. L. Cook and K. E. Torrance. A reflectance model for computer graphics. ACM Trans. Graph.,
1(1):7–24, 1982.

[4] Pat Hanrahan and Wolfgang Krueger. Reflection from layered surfaces due to subsurface scattering. In
SIGGRAPH, pages 165–174, 1993.

[5] Eric Heitz. Understanding the masking-shadowing function in microfacet-based BRDFs. J. Comput.
Graph. Tech, 3(2):32–91, 2014.

[6] Eric Heitz. Sampling the GGX distribution of visible normals. J. Comput. Graph. Tech, 7(4), 2018.

[7] Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan. A data-driven reflectance
model. ACM Trans. Graph. (Proc. SIGGRAPH), 22(3):759–769, 2003.

[8] Christophe Schlick. An inexpensive BRDF model for physically-based rendering. Comput. Graph.
Forum, 13(3):233–246, 1994.

[9] TS Trowbridge and Karl P Reitz. Average irregularity representation of a rough surface for ray reflection.
J. Opt. Soc. Am., 65(5):531–536, 1975.

[10] Bruce Walter, Stephen R Marschner, Hongsong Li, and Kenneth E Torrance. Microfacet models for
refraction through rough surfaces. Rendering Techniques (Proc. EGSR), pages 195–206, 2007.

12

	Diffuse
	Metal
	Clearcoat
	Glass
	Sheen
	Putting everything together

