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Friction is a complex phenomenon resulting from elastic and plastic deformations cou-
pled with molecular interaction along the contact boundary. When two surfaces touch,
their roughness, and normal force determines the actual area under contact, governing
the process of deformation and molecular interaction. A typical macroscopic interac-
tion may involve millions of microscopic contacts and the aggregate of these forces
give rise to the phenomenon of friction. In this thesis, our goal is to simulate the
phenomenon of friction assuming unlubricated contact and elastic deformation at the
contact asperities. We collect data by varying many parameters that affect friction be-
tween two surfaces and build a function approximator exploiting the correlation in
data. Such an approximator is a computationally inexpensive, versatile and more ac-
curate substitute for friction coefficient tables currently in use with various physically
based simulators.
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Traduction en français

Une Étude Numérique du Contact Frictionnel

par Sayantan DATTA

La friction est un phénomène complexe résultant de déformations élastiques et plas-
tiques couplées à une interaction moléculaire le long de la frontière de contact. Lorsque
deux surfaces se touchent, leur rugosité et leur force normale déterminent la surface
réelle en contact qui régit le processus de déformation et d’interaction moléculaire.
Une interaction macroscopique typique peut impliquer des millions de contacts mi-
croscopiques, c’est l’agrégation de ces forces qui provoque le phénomène de friction.
Dans cette thèse, notre objectif est de simuler le phénomène de frottement en sup-
posant un contact non lubrifié ainsi qu’une déformation élastique aux aspérités de con-
tact. Nous recueillons des données en faisant varier de nombreux paramètres qui af-
fectent le frottement entre deux surfaces et construisons une approximation exploitant
la corrélation des données. Un tel approximation est peu coûteux, polyvalent et plus
précis que les tables de coefficients de frottement actuellement utilisées dans divers
simulateurs physiques.
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Chapter 1

Introduction

Friction is a ubiquitous phenomenon and we all have experienced the phenomenon
or lack thereof in our daily lives. Friction is the reason why we can hold a coffee mug
in our hand or write on a blackboard. Without friction, it would be almost impossible
to carry out regular tasks in our daily lives. In fact, we are so used to friction, that we
hardly acknowledge its presence and only realize its importance when it is missing
e.g. walking on an icy sidewalk during winter or stepping on a banana peel. At the
same time, friction also makes doing other things harder. Friction is the reason why it
is so difficult to slide furniture on a floor or ride a bicycle on snow.

FIGURE 1.1: The image on the left demonstrates the effect of friction
as an operating mechanism for brake calipers. The image on the right

shows wearing of a gear due to friction.

1.1 Overview of Friction Force

Friction is a contact force – meaning it appears whenever two surfaces are in contact.
The force is non-conservative and opposes the motion between two surfaces that are in
contact. Work done due to non-conservative forces depend on the trajectory of motion.
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Such forces are responsible for energy losses in a system. As seen in Figure 1.1, friction
is both useful and adversarial. It is the primary reason for wear in machines and causes
energy dissipation and efficiency losses. On the other hand, it is used as an operational
mechanism in many applications such as brakes in vehicles, treads on a tire, contact
forces in robotic limbs and many more.

Direction of motion

Force of
friction

Interlocking
asperities

Distance scale ∼ 10−6 − 10−4m

Molecular
interaction

Distance scale ∼ 10−10 − 10−9m

FIGURE 1.2: Frictional contact at different scales.

Let us look at the operating mechanism of friction. As shown in Figure 1.2, friction
force always act in the direction opposing the relative motion. When looked closely
under a microscope, the surface of a material rarely looks smooth. In fact, one can
see peaks and valley like structure all over the surface. These peaks are commonly
referred to as asperities. One cause of friction force is the entanglement of asperities
between the surfaces. Horizontal forces required to deform the asperities or break
them constitutes a part of friction forces. If we further zoom at the contact between
two asperities, molecular interactions also come into play. In many cases, molecular
interactions constitute a significant portion of the friction forces. Thus, the friction
force is a complex combination of deformation of asperities and molecular interaction.
We will investigate these factors in more details in the next chapter.
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1.2 Historical Remarks

First systematic study of friction dates back to more than 500 years. Leonardo da
Vinci was among the first to study friction from an engineering standpoint. As shown
in Figure 1.3, he developed rolling elements aimed at reducing friction and wear and
studied several tribological subtopics such as friction, wear, bearing materials, lubrica-
tion systems, gears, screw-jacks, and rolling elements. In fact, da Vinci discovered and
documented the Laws of Friction nearly 150 years before Amontons’ Laws of Friction
were introduced.

FIGURE 1.3: Diagrams dating back to 1500 A.D. showing attempts to ana-
lyze the friction on a cylinder supported in a half-bearing. Adopted from

Codex Arundel, British Library, London (Arundel folio 41r c. 1500-05).

Other pioneers in the field of tribology are Guillaume Amontons (1663-1705), John
Theophilus Desaguliers (1683-1744), Leonard Euler (1707-1783), and Charles-Augustin
Coulomb (1736-1806). These pioneers brought tribology to a standard, and their laws
still apply to many engineering problems today.

1.3 Motivation

Understanding friction reliably and predictably can simplify many issues relevant in
computational fabrication, robotics, and animation. With the commercialization of 3D
printing, it is now possible to fabricate parts with unprecedented precision. How-
ever, we have to rely on computational models to accurately predict the behavior of
parts before physically printing them. Modeling the objects and simulating them in
a virtual environment can significantly reduce design errors and minimize the cost of
production. There have been significant advances along this direction [7, 10] and is
an active field of research. Similarly, in robotics and reinforcement learning, it is more
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cost effective to train a robot in virtual environments than the actual environment, es-
pecially when the environment is hazardous or inaccessible. Friction is an important
part of any physically based system, and accurate modeling of friction is of paramount
importance. In computer animation, many realistic visual effects like cloth, and vol-
umetric soft bodies require accurate modeling of friction to produce finer details like
wrinkles on cloth or skin.

1.4 Current Issues

We use an approximation of Coulomb’s law to model friction. Coulomb’s law orig-
inated during the late 18th century and is astonishing that we continue to use this
model through 21st century. The main reason for the popularity of Coulomb’s law is
its simplicity and its ability to provide a sufficiently good approximation of the friction
phenomenon in many cases. However, even with all the simplicity, exact implemen-
tation of Coulomb’s law is difficult owing to its non-linear nature. Non-linearity vio-
lates many solvability guarantees offered by its linearized approximation. Most of the
popular physics simulator like Bullet, PhysX and MuJoCo use a linearized polyhedral
approximation of Coulomb’s friction. We discuss the linearized polyhedral approxi-
mation in more details in the upcoming chapter.

When using Coulomb’s law of friction for rigid bodies, we do not consider the
geometry of the surface of the two materials in contact. The current approach relies
heavily on friction coefficients obtained from experimental observations, and it is not
always possible to run experiments on every pair of surfaces we intend to simulate.
Since friction depends on the geometry of the surfaces in contact, known coefficients
may not be accurate due to differences in the surface geometries [2].

In most models, we ignore internal damping and the effects of plastic deforma-
tion along the contact surface. Plastic deformation is the condition when a material is
pushed beyond its elastic limit, and the material is no longer able to regain its original
shape. When pushed further, the material may fracture causing wear in the material.
Due to plastic deformation and wear, the surface geometry may change, affecting the
friction coefficient. Also, the stress-strain curve is no longer linear when operating in
the plastic region which can also affect friction properties of a material.

Lastly, no distinction is made between the static and kinetic coefficient of friction
even though in practice they are very different. Usually, the simulators use the same
coefficient of friction in both static and dynamic case.
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1.5 Our Goals and Expectations

We aim to study the nature of friction and build a computational framework for tack-
ling issues relevant in physically based simulators. Our primary goal is to build an
approximate function that outputs the coefficient of friction based on various elastic
parameters affecting the phenomenon. Generating an accurate coefficient of friction
instead of force has the advantage that it can be easily integrated into existing frame-
works. Since our approach requires a lot of data, we build a simulator which can
capture the effects of changing various parameters on friction. The data can also be
obtained from real world measurements but using a simulator has an added advan-
tage that we can build any surface geometry and material which may not exist in the
real world or are costly or difficult to fabricate. Using a simulator is also cheaper than
buying robots for measurements.

Our objective is to capture dry friction, meaning without any lubrication at the in-
terface, for both static and dynamic case using a simulator. We do not simulate plastic
deformations and limit ourselves to the elastic case. Our work involves building a
simulator which can capture the effects of changing various parameters on friction.
We start with a thorough background in both tribology and computer graphics to get
the idea of prevalent techniques and understand the factors affecting frictional contact
in detail.
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Chapter 2

Literature Survey

In this chapter, we perform a survey of the tribology and computer graphics literature.
Our aim is two-fold; first, we wish to understand static and dynamic friction and
differentiate the models used to describe the two categories; second, we identify the
parameters which affect the two categories friction. Our tribology literature survey is
described in Section 2.1 and Section 2.6.

In the second part, starting from Section 2.7, we discuss various models used to
simulate friction in computer graphics. We discuss the problems associated with mod-
eling friction in rigid body mechanics and their prevalent solutions. We end the chap-
ter with a discussion on soft bodies and an approach for modeling friction in soft
bodies.

2.1 Couloumb’s Law

Coulomb’s law of friction was postulated by Charles-Augustin Coulomb during the
18th century and still apply to many engineering problems today. The findings of
Coulomb and his predecessors are summarized in the following three laws:

• Law 1: The force of friction is directly proportional to the applied load (Amon-
tons 1st Law).

• Law 2: The force of friction is independent of the apparent area of contacts
(Amontons 2nd Law).

• Law 3: Kinetic friction is independent of the sliding velocity (Coulomb’s Law).

The three laws only apply to dry friction. It was well known from ancient time
that lubrication changes tribological properties. All three laws can be condensed in
the so-called Coulomb’s law (or Amonton-Coulomb law), which relates friction force
Ft and the load acting normally across the surfaces FN by

Ft = µFN, (2.1)
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where the scalar µ is the coefficient of friction which depends on the properties of the
material in contact and the geometry of the interface. Notice that the law does not
differentiate between static and kinetic friction, but it has been empirically found that
µs ≥ µk where µs is the coefficient of static friction whereas µk is the coefficient of
kinetic friction.

2.2 Origin of Friction

Tribology is the general field of science which concentrates on contact mechanics of
moving interfaces. Tribology encompasses friction, lubrication, wear, and adhesion.
An important aspect of tribology is the dissipation of energy through the breaking
of molecular bonds, plastic deformation and wear. In this thesis, we focus primarily
on friction. Whenever two surfaces are in contact, friction acts as a force that resists
tangential motion between the objects in contact. The study of friction at the atomic
level involves two entangled sub-issues. First is the roughness of surfaces in contact
and second is the interfacial mechanism for conversion of mechanical energy to other
forms [22]. In absence of plastic deformation or wear, friction largely originates at an
atomic scale. However, when loading is large, plastic deformation and wear forms the
important component of friction force while the other component being the atomic
forces.

At the atomic scale, the friction force is dependent on both contact speed vc and
real area of contact Ac, with the “force law” expressed as

Ft = ηvc Ac; η =
ρ

τ
. (2.2)

Here, ρ is the aerial mass density and τ is a characteristic “slip time”, which cor-
responds to the time for the moving object’s speed to fall to 1/e of its original value,
assuming it is stopped by frictional forces alone. Here, “e” is the Euler’s number.

At microscopic level or at the atomic scale, the friction force is dependent on the
true area of contact and independent of the normal force applied. However, at the
macroscopic level, friction is largely independent of the area of contact but depends
on normal force. The difference in the form between the microscopic and macroscopic
friction laws is rationalized by assuming the true real area of contact between macro-
scopic objects is likely to be proportional to the loading force. Also notice that mi-
croscopic friction depends on contact speed vc while Equation 2.1 is independent of
speed. It is assumed that the instantaneous sliding velocity at the microscopic contacts
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is much larger than the sliding velocity of the material itself i.e. vc ≫ v. Hence, the ag-
gregate force due to friction is the property of the junction itself rather than the sliding
velocity.

2.3 Relationship to Surface Roughness

Friction is a complex phenomenon. When two surfaces come into contact, only certain
parts of the surface will carry the applied load. The sum of these discrete contact areas
forms the real contact area. After Section 2.2, it is somewhat counterintuitive that flat
surfaces tend to have lower friction coefficients compared to rough surfaces. We know
friction depends on the real area under contact which is supposedly much greater
for smooth surfaces compared to rough surfaces. However, the friction force due to
an area under contact only considers interfacial friction i.e. friction due to molecular
bonds. Another large component of friction is due to plastic deformation of asperities
under contact. When two surfaces are rubbed together, their asperities interlock [20].
Depending upon the normal load, the asperities either slide over each other or deform.
When the normal load is low, the tendency of the surface is to slide over each other
without causing much deformation. Thus, friction force under low normal load is
mostly due to molecular adhesion of contacts at the asperities of the two surfaces. As
the loading increases, the real area of contact increases due to deformation. At the
same time, due to increased loading, it is now more difficult to simply slide over the
asperities. Hence, the asperities have little other option than deforming laterally or
causing shearing. Some extra energy is required for causing the shear, but energy
is lost only in case deformation is plastic. The combined effect of interfacial friction
and interlocking of asperities results in a higher coefficient of friction in rough surface
compared to smoother surfaces.

There is, however, an exception to this rule. When surfaces that are extremely
smooth like glass on glass, the molecular interaction dominates the friction phenomenon.
In fact, molecules are so close they tend to act as glues.

2.4 Categories of Friction

Coulomb friction is categorized into two different categories namely static and kinetic
friction. This categorization is an oversimplification of the entire mechanism but is
still a good approximation for engineering purposes.
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• Static Friction - If a body is at rest on another surface, to start its sliding motion,
a tangential force exceeding the static friction force has to be applied to it.

Ft ≤ µsFN. (2.3)

• Kinetic Friction - If a body is sliding across a surface, to maintain its velocity,
a tangential force in the direction of the motion, and equal in magnitude to the
dynamic friction force has to be applied.

Ft = µkFN. (2.4)

There is a third type called the rolling friction. However, for perfect rolling or
rolling without slipping, the type of friction between the wheel and the surface is of
static type. This is because when the wheel touches the surface, the surface of the
wheel deforms into a small flat patch. As long as the patch is in contact with the
surface, there is no motion between the patch and the surface. When the wheel turns,
the old patch simply ceases to exist, and a new contact patch is formed.

It should be noted that static friction acts as a constraint in a sense that if the tan-
gential force does not exceed µsFN, the object can not slide. Hence there is no loss of
energy due to static friction. In practice, under an unlubricated condition, also known
as dry friction, µs ≥ µk. Again, this statement is grossly simplified but can be ex-
plained by arguing that once the body starts moving the number of molecular bonds
at any given instance is reduced. From Equation 2.2, which gives the forces due to
molecular interaction, we can say slip time τ decreases when the body is in motion.

2.5 Modeling

We will briefly survey the tribology literature and figure out the prominent pattern in
modeling friction. Modeling friction can be conceptually partitioned into two task -
modeling the surface and modeling the contact. In a majority of cases the two tasks
are extremely intertwined and are difficult to treat them as independent subjects. In
tribology literature, people have modeled rough surfaces using statistical and spectral
analysis tools. To simplify the contact problem, people assume the contacts to have
regular geometric shapes like spheres, cylinders, planes, and bristles. Further, the
contact can be modeled as plastic or elastic. These variations have resulted in a wide
range of models capturing different aspects of friction.

It is well known that surface roughness may cause the real area under contact to
be much smaller than the nominal area. The calculation of the area of contact and the
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prediction of how this varies with load is not so straightforward. The prior art used the
Hertzian theory of contact between spheres to individual contact spots [16]. However,
there are two difficulties with this approach. The area of the contact spot depends on
the radius of the asperity, which is not usually known. Second, it states that contact
area is proportional to the applied load non-linearly as area ∝ load( 2

3 ). Both these
obstacles were removed through the idea that although the overall stresses are in the
elastic range the local stresses at the contact spots are much higher so that the elastic
limit will be exceeded and the contact will yield plastically [18, 15]. Bowden et al. [8],
used a similar approach in their model which assumes the asperities are plastically
deformed. They found that the mean normal pressure corresponds to about three
times the yield pressure or 2.8 times effective Young’s modulus. The lateral stress due
to adhesion was assumed to be equivalent to the shear strength of the soft material.
Their model no longer needed the computation of real area of contact as the contact
patch is assumed to have uniform yield pressure due to plastic deformation. This
model was successfully used for the prediction of friction coefficient for various metal
– metal contacts.

µk =
Tangetial force
Normal Force

=
σAc

2.8EAc
=

σ

2.8E∗ . (2.5)

The above equation describes the relationship between the coefficient of friction and
various elastic parameters described by Bowden et al. [8]. Quantity σ is the shear
strength of the softer material, while E∗ is the effective Young’s modulus computed as
Equation 2.12. Note that the true area under contact Ac is no longer required.

Archard et al. [2] pointed out that it is reasonable to assume plastic flow for the
first few traversals of one body over another but the assumption losses credibility
when same part come into contact multiple times. He showed that although the sim-
ple Hertzian theory did not predict the observed proportionality between contact area
A and load, a generalized model in which each asperity is covered with micro asperi-
ties recursively – an idea like fractals, gave successively closer approximations to the
Coulomb’s law. Archard et al. showed that for any physically plausible surface if the
number of contacts remains constant while the size of the asperities increases with
load, the effective or real area is proportional to load( 2

3 ). On the other hand, if we in-
crease the number of contacts while keeping the size of the asperity constant, the real
area is proportional to the load.

To model the lateral forces due to friction, it is essential to consider molecular ad-
hesive forces at the contact junctions. Gane et al. [14] performed detailed analysis of
adhesive junction under light load or more importantly under an elastic condition for
metals. They showed the relationship between electrical conductivity, applied load,
material properties, and adhesive forces. Ogilvy et al. [30] removed the need for the



12 Chapter 2. Literature Survey

simplifying assumptions about the geometry of asperities by presenting a numerical
model to predict the friction force between rough surfaces. The Ogilvy model consid-
ers contact between two numerically-generated Gaussian surfaces and uses the con-
cept of equivalent surface roughness. The equivalent surface is a contact between an
equivalent rough surface and a flat plane. The equivalent rough surface is obtained by
summing up the heights of the two real surfaces and an effective modulus that repre-
sents their elastic moduli. Ogilvy calculated elastic deformation of asperities using the
Hertz theory and accounted for their plastic deformation with a simple plasticity the-
ory. Under conditions of steady sliding, they calculated friction force due to adhesion
by using two methods that she called microscopic and macroscopic.

When using the microscopic method, the total friction force becomes the sum of
the adhesive forces required to break every junction is given by

F = ∑
i

fi = ∑
i

2πri∆γ. (2.6)

Here, ri is the is the radius of curvature of the contacting peak and ∆γ is the adhesion
surface energy of the two surfaces. The latter quantity is given by

∆γ = γ1 + γ2 − γ12, (2.7)

where scalars γ1 and γ2 are the surface energy for the two materials and γ12 is the
surface energy of the combined surfaces.

In the macroscopic approach, the total friction force is related to the total true con-
tact area under the assumption that the shear strength of adhesive junctions are con-
stant, but without considering the details of each asperity under contact.

F = s ∑
i

Ai, (2.8)

where Ai is the real area of contact computed from Hertzian contact equation, and s is
the shear strength of the interface. She observed a qualitative agreement between the
numerical predictions of her model and the corresponding experimental results.

2.5.1 Hertzian Contact

At the end of the nineteenth century, Hertz et al. solved the contact problem of elas-
ticity theory for the compression of ideally smooth bodies with primary contact along
lines and at a point. The main application of the Hertz contact model is to compute the
real Area of contact under vertical loads and the pressure distribution of the load at
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the contact patch. The following assumptions are made in determining the solutions
of Hertzian contact problems:

• The strains are small and within the elastic limit.

• Each body can be considered an elastic half-space, i.e., the area of contact is much
smaller than the characteristic radius of the body.

• The surfaces are continuous and non-conforming.

• The bodies are in frictionless contact.

FIGURE 2.1: Contact between two elastic spheres.

Two Sphere Contact

Here we assume R1 and R2 are the radii of two spheres in contact. E1 and E2 are the
Young’s modulus and ν1 and ν2 are the Poisson ratio of the two bodies in contact. F is
the normal load.

Radius of contact patch: a =
3

√
3FRe

4E∗ (2.9)

Pressure distribution as a function of distance r from the center of the contact patch
is given as

p(r) = p0

√
1 − r2

a2 (2.10)

where,
1
Re

=
1

R1
+

1
R2

, (2.11)



14 Chapter 2. Literature Survey

1
E∗ =

1 − ν2
1

E1
+

1 − ν2
2

E2
, and (2.12)

p0 = 3

√
6FE∗2

π3R2
e

. (2.13)

2.5.2 Local Friction

Z

Y

X

Contact patch
with radius a

pn

r

Body 1

Body 2

XYZ is the local frame of
reference at the contact patch.

FIGURE 2.2: Local contact model. The local friction force r is in the XY
plane opposing the relative motion of the two bodies. The local normal

pressure pn acts along axis Z.

To model the molecular interaction, researchers have employed empirical models
for capturing local friction over a contact patch [20]. In this section, we will discuss an
empirical model known as the binomial law. The resistance of an adhesive junction to
shearing takes place in the local tangential direction and, in effect, constitutes the local
friction.

The law is given as
r = a + bpn, (2.14)

where pn is pressure along the local normal direction at the patch of contact and r is
the resistive shear stress on the local XY plane opposing the direction of motion. As
per Karpenko et al. [20] metals and polymers have b = 0.02-–0.25; for metal-–metal
sliding a is between 2.5-30 MPa and for metal—polymer pairs a = 0.2-–0.5 MPa. .
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The model computes the net normal force acting along the direction perpendicular
to the mean surface as

N =
∫ ∫

A
(pncosθx − rsinθx)cosθy dx dy. (2.15)

In the above equation, A is the true contact area whereas θx, and θy represent the
angle of the contact slopes with respect to axis-X and axis-Y directions in the global
coordinate system.

Similarly, the net tangential force or force of friction opposing the direction relative
motion along the mean surface is given as

F =
∫ ∫

A
(pnsinθx + rcosθx)cosθy dx dy. (2.16)

2.5.3 Friction in Elastomer

Kinetic friction in rubber-like material or elastomer can be attributed to the dissipation
of energy as heat inside the body of the material rather than plastic deformation or ad-
hesion at the interface. This is a key concept which is true for highly viscous materials
and is dependent on the relative velocity of the two material. The short wavelength as-
perities of the rough surface would excite rubber periodically at high frequencies with
periodicity dependent on the velocity. This builds up vibrations inside the body of
elastomer and the energy is dissipated as damping – a process more similar to forced
vibrations in elastic solids [33, 35].

2.6 Summary of Tribology Literature Survey

It is important to understand the nature of friction based on the domain of application
we wish to explore. With a wide variety of models to choose from, it is essential to
consider the issues specific to the problem and select a model which fits bests to our
problem description. In this chapter, we limit our discussion to dry friction in the
context of static and kinetic friction.

A large majority of the models discussed in tribology literature focus on static fric-
tion. Since static friction deals with bodies that are not yet in motion, there is no
dissipation of energy due to friction. This makes plastic deformation and adhesion
like effects optional in case of static friction. However, if the surfaces are smooth or
polished like glass, one must consider adhesion even for static case. A vast majority of
literature predict static friction based on elastic deformation. The resistance to motion
comes primarily from resistance to deforming the asperities. Greenwood et al. [15]
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proposed a model composed of hemispherically tipped asperities with a uniform ra-
dius of curvature. They approximated the distribution of asperity heights about the
mean plane as Gaussian. For mathematical convenience, contact between two rough
surfaces was simulated as a contact between an equivalent rough surface and a rigid
flat plane. The model used the elastic theory for the contact problem. Nayak et al. [28]
extended the idea and introduced the techniques from random process theory into the
analysis of Gaussian rough surfaces. He related surface statistics such as the distri-
bution of summit heights, the density of summits, the mean surface gradient, and the
mean curvature of summits to the power spectral density of a profile of the surface.

In the case of kinetic friction, effects like plastic deformation and adhesion are im-
portant. For a majority of real materials, it is no longer sufficient to just consider elastic
deformation of asperities. Unlike the static case, we now have bodies which are in rel-
ative motion and dissipation of energy is important. Elastic deformation and material
damping are insufficient to account for the energy losses in a majority of materials
with the exception of elastomer. For soft and viscous material like rubber, the internal
damping of the material may be sufficient in producing kinetic friction as detailed in
Section 2.5.3. The common trend in modeling kinetic friction is through elastic contacts
while introducing an energy dissipating element at the local junction. One such model
is described in Section 2.5.2. The energy dissipation effects due to plastic deformation,
wearing and adhesion can be introduced by tuning the parameters at local contacts.
This model, however, cannot account for changes in surface geometry due to wearing
and plastic deformation. For example, friction may reduce after rubbing two rough
surfaces several times together due to breakage and plastic deformation of asperities.
On the other hand, rubbing a rough hard metal against rubber may produce entirely
different effects. HA et al. [13] generalized the asperity models described by Nayak et
al. [28] to model sliding friction between rough surfaces. To model the sliding resis-
tance at true contacts, they used empirical relations based on the data collected from
various other sources in the tribology literature.

2.7 Friction in Computer Graphics Literature

The aspect of friction is not new in computer graphics literature. The first systematic
study of friction in the context of graphics was done by Baraff et al. [4]. He showed
that under Coulomb’s law, even simplest of the rigid body contacts may not have a
solution when using forces and acceleration for resolving contacts with friction and
proved that deciding if non-impulsive contact forces are enough to prevent interpen-
etration is NP-complete. Hence, no efficient polynomial time algorithm is known to
exist for computing contact forces. However, if impulsive forces are allowed, then a



2.8. Rigid Body Models 17

solution exists for a wider class of problems and is guaranteed to have a solution for
single contact [41] with linearly discretized friction cone. An LCP formulation for con-
tact forces has been investigated by Baraff et al. [4], 1991 and Baraff et al. [5], 1994. In
this approach, first the contact forces are computed and then a time integration step
is performed. A more popular approach is to combine the acceleration resolution step
with the integration step for velocities. This is known as the impulse based formu-
lation. In this approach, the discontinuities of the contact forces are smoothed over
by the time integration step resulting in a more tractable solution. The impulse based
approach can be further differentiated into two categories - position based and ve-
locity based. Position based approaches [41] guarantees at the end of each time step,
the numerically generated trajectories do not violate rigid constraint at position level.
While in the velocity based approaches [1, 12], the trajectories only take into account
rigid constraint at velocity level. Using circular or elliptical cone results in a non-linear
complementarity formulation. While such a non-linear complementarity formulation
which is more accurate, there is less supporting theory to solve the equations arising
from non-linear formulations. A more common approach is to use polyhedral approx-
imations to the true cone which can approximate the true friction cones as accurately
as desired [1, 12, 23] by increasing the number of vertices in the polyhedron. Kauf-
man et al. [21] approached the contact problem in linear vector space of rigid body
velocities called se(3). In this space, a rigid body can be viewed as a point mass with
multiple contact constraints acting on it. However, normal contact impulse is resolved
independently of the friction while friction is introduced as a function of resolved im-
pulse and friction coefficient. As far as true cones are concerned, we are yet to see its
application in case of velocity based or position-based formulation for rigid bodies.
However, true friction cone has been used for soft body hair simulation by Descoubes
et al. [6]. In their approach, they fold the three Coulomb’s law into a functional approx-
imation and use non-smooth Newton method to solve the Nonlinear complementarity
problem for point masses. Pabst et al. [31] uses friction tensors to model isotropic and
spatially varying friction for fabrics. Their approach solves the contact problem by
assuming contact to be frictionless and introduce friction as a function of normal force
and tangential velocity obtained from the contact resolution step. Their approach is
not entirely physically based but captures anisotropic effects with minimal computa-
tion.

2.8 Rigid Body Models

In this section, we discuss the approaches to incorporating friction in rigid body sys-
tems. We start with acceleration based approaches and discuss their issues before
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moving to the more preferred velocity based approaches.

2.8.1 Resolving Contact Acceleration

In this section, we investigate contact resolution at the acceleration level and the as-
sociated issues in presence of friction. We start with the frictionless case and see how
friction makes the contact problem unsolvable in many cases.

ni

nj

rxi

ryi

ryj

ith contact between rigid body
X and Y

jth contact

X

Y

FIGURE 2.3: Rigid body contact without friction

Referring to Figure 2.3, the contact normal nxi is associated with body X and nyi

with body Y for the ith contact such that for nxi = −nyi = ni. The magnitude of nor-
mal contact force acting at the contact is fi and is always positive. Thus, force acting
on body X and Y is finxi and finyi respectively. We denote the relative normal accel-
eration of the two bodies for the ith contact as ai and is given by

ai = (ax − ay) · ni, (2.17)

where we define vectors ax and ay as the acceleration for body X and Y at the ith point
of contact under the influences of external forces [3]. The accelerations are given as

ax = m−1
x (fx + ∑

k∈Sx

fknxk) + I−1
x (τx + ∑

k∈Sx

rxk × fknxk)− ωx × Ixωx)× rxi

+ ωx × (ωx × rxi),
(2.18)
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ay = m−1
y (fy + ∑

k∈Sy

fknyk) + I−1
y (τy + ∑

k∈Sy

ryk × fknyk)− ωy × Iyωy)× ryi

+ ωy × (ωy × ryi),
(2.19)

where m is the mass, ω is the angular velocity and I is the inertial tensor of a rigid
body. Vector f and τ denotes the force and torque due to non-contact forces. Sets Sx

and Sy denotes all the contacts for body X and Y. It should be noted that the direction
of normal nk for the kth contact should be such that normal force acting on contact pair
is equal and opposite.

Equation 2.18 and 2.19 suggest that relative normal acceleration ai is a linear com-
bination of contact force magnitudes. For n contacts in the system, we can rewrite
Equation 2.17 as

ai =
n

∑
j=1

aij f j + bi. (2.20)

Comparing equation 2.17 and 2.20 we get,

bi = (m−1
x fx − m−1

y fy + I−1
x (τx − ωx × Ixωx)× rxi − I−1

y (τy − ωy × Iyωy)× ryi

+ ωx × (ωx × rxi)− ωy × (ωy × ryi)) · ni.

(2.21)

The scalar aij denotes the effect of jth contact on the ith contact.

aij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m−1
x + m−1

y + (rxi × ni)
T I−1

x (rxi × ni)

+ (ryi × ni)
T I−1

y (ryi × ni), if j = i

m−1
x nxj · ni + (rxi × ni)

T I−1
x (rxj × nxj), if j ∈ Sx

−m−1
y nyj · ni − (ryi × ni)

T I−1
y (ryj × nyj), if j ∈ Sy

0, otherwise

(2.22)

For all ai, bi and fi, i ∈ 1, 2, 3 . . . n we can write Equation 2.20 as

a = Af + b, (2.23)

where vector a = [a1, a2, . . . an]T, b = [b1, b2, . . . bn]T and f = [ f1, f2, . . . fn]T. The
elements of matrix A are given by aij defined by Equation 2.22. In absence of friction
A is symmetric positive definite [4]. It should be noted that both a and f are unknown
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and must satisfy the following conditions

fi ≥ 0, ai ≥ 0 and fi ai = 0 for all i ∈ 1, 2, . . . n. (2.24)

The conditions state that when contact forces are non-zero, the relative normal ac-
celeration must be zero in order to avoid penetration. When relative normal accelera-
tion is positive it means that contact is just about to break and thus no force is exerted
by the contact. This is known as complementarity condition. The Equation 2.24 can be
reformulated as following minimization problem:

min
f

fT(Af + b), s.t. Af + b ≥ 0 and f ≥ 0. (2.25)

Baraff et al. [4], 1991 solves Equation 2.25 directly using Lemke’s algorithm. Baraff
et al. [5], 1994 solves Equation 2.24 by iteratively fixing each pair fi and ai using
Dantzig’s algorithm which is more efficient compared to Lemke’s algorithm.

Baraff et al. [4], 1991 studies the case of dynamic friction, where friction contact
force is modeled as fi(ni + µti) where ti is the direction opposing relative tangen-
tial velocity. Using Equation 2.22, it is easy to see that in case of dynamic friction,
aij ̸= aji because ti · nj ̸= tj · ni. Hence the matrix A is no longer symmetric. In such
cases Lemke’s algorithm no longer guarantees a solution for Equation 2.25 even for the
cases which have solution. The author switches over to an impulse based formulation
when Lemke’s algorithm fails to find a solution. The case of static friction is modeled
using dynamic friction by linearly interpolating the friction force between 0 to µ fn as
a function of relative tangential velocity.

Baraff et al. [5], 1994 handles the case of static friction more elegantly by introduc-
ing tangential constraints. An orthogonal local frame of reference given by [tx, ty, n] is
created at the point of contact as shown in Figure 2.4. The magnitude of contact forces
along each basis vector are given by fX, fY and fN while the relative acceleration in
each direction is aX, aY and aN. The approach differs from Baraff 1991 due to the fact
that the new approach comes with two extra degrees of freedom for solving static fric-
tion. However, in dynamic case fX, fY are no longer independent and depends upon
fN thus limiting the solvability of Equation 2.26 and 2.27.

Constraints in the normal direction are given as

fNi ≥ 0,

aNi ≥ 0 and

fNi aNi = 0 for i ∈ 1, 2, . . . n.

(2.26)
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n

ty

tx

FIGURE 2.4: Friction pyramid.

Constraints in the tangential direction are given as√
f 2
Xi + f 2

Yi ≤ µ fNi,

aXi fXi + aYi fYi ≤ 0 and√
a2

Xi + a2
Yi

(
µ fNi −

√
f 2
Xi + f 2

Yi

)
= 0 for i ∈ 1, 2, . . . n.

(2.27)

The first condition in Equation 2.27 limits the magnitude of friction to a maximum
of µ fNi. The second condition is essentially saying the direction of friction force should
oppose tangential acceleration. Note that this condition may not result in maximum
energy dissipation due to friction as it doesn’t require the tangential force and accelera-
tion to be in exactly opposite direction. The last condition ensures that when tangential
acceleration is non-zero, the magnitude of friction force reaches its maximum µ fNi.

2.8.2 Resolving Contact Impulses

In this section, we will investigate resolving contacts using impulses. It is well known
that contact forces and accelerations are insufficient to solve the complementarity prob-
lem defined by Equation 2.24 in presence of friction. The principle of constraints states
that constraints should be satisfied by non-impulsive forces if possible; otherwise,
impulsive forces should be used to satisfy constraints. However, deciding whether
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non-impulsive contact forces are enough to prevent interpenetration is in itself NP-
complete. Many have argued that the principle of constraint is too restrictive and
there is no real justification for the principle [41, 4, 1]. On the other hand, an impulse
based formulation-irrespective of whether non-impulsive forces have a solution or not
is proposed which can tackle a far broader class of problems.

We begin by describing rigid body dynamics in velocity space. Let’s define vN

the relative normal velocity between the two rigid bodies at the point of contact. We
define vN as

vN =
[
−nT −(rx × n)T nT (ry × n)T

]
⎡⎢⎢⎢⎢⎣

vx

ωx

vy

ωy

⎤⎥⎥⎥⎥⎦ , (2.28)

where v is the velocity of the center of mass and ω is the angular velocity of the rigid
bodies in contact. The vector r indicates the direction of the point of contact from the
center of mass. Assuming the number of contacts is n and the number of rigid bodies
in the system is m, we can write the relative normal velocities for all rigid bodies in
vector form as follows

u =
[
v1 ω1 v2 ω2 . . . vm ωm

]T
. (2.29)

Here, u ∈ R6m is the concatenated vector containing the velocities of center of mass
and angular velocities of the rigid bodies in the system. We can write equation 2.28 in
vector form as

vN = JNu, s.t. JN ∈ Rn×6m

= [v0, v1, ..., vn]
T,

(2.30)

where the scalar components of vN are denoted using vi and gives the relative normal
velocity at the point of ith contact. The sparse matrix JN is also known as contact Jaco-
bian is obtained by placing one constraint in each row. The columns of JN is indexed
using the index of the rigid bodies in the system. In each row, just two columns are
non-zero indicating the two rigid bodies in contact. For example, if two rigid bodies X
and Y are in contact, then xth and yth column is [−nT −(rx × n)T] and [nT (ry × n)T]
respectively.

To avoid interpenetration between two rigid bodies at the point of contact we must
have

vN ≥ 0. (2.31)
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Since constraint forces act along the constraint normal, we have

FN = JT
NfN and

fN = [ f0, f1, . . . fn]
T,

(2.32)

where fi, for i ∈ 0 . . . n is the magnitude of impulse acting along the normal direction.
The vector FN contains the normal constraint impulse and angular impulse pair for all
the rigid bodies in the system.

To avoid interpenetration, we need the normal forces to be repulsive when the
rigid body pair is in contact and must be zero when they separate. This yields the
complementarity constraint defined as follows

vi ≥ 0 compl. fi ≥ 0 for all i ∈ 1...n. (2.33)

We write the time discretized equation of motion as

M(ut+1 − ut) = FN + Fext∆t, (2.34)

where M ∈ R6m×6m is the generalized mass matrix given by

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 I 0
I1

m2 I
I2

...
...

...
... . . . ...

...
mm

0 Im

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.35)

In the above equation, scalar mi is the mass of the ith body, I as the identity matrix,
Ii as the corresponding inertia tensor. Other forces are given by Fext ∈ R6m and ∆t is
step size. Using Equation 2.30 and 2.34, we can write the relative normal velocity in
vector form as

vN = JN ut+1

= JN M−1 JT
Nfn + JN M−1 Fext∆t + JN ut.

(2.36)

We can rewrite the above equation more compactly as

vN = Afn + b ≥ 0, s.t. A = JN M−1 JT
N and b = JN(M−1 Fext∆t + ut). (2.37)
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Using complementarity condition in Equation 2.33 and Equation 2.37, we solve for
the collision impulses fn. There are a variety of ways to solve the problem. Erleben et
al. [12] used Projected Gauss-Seidel. Other techniques for solving the complementarity
problem include Gauss Jacobi, Lemke’s algorithm or Dantzig’s algorithm.

Friction Pyramid Approximation

In this section, we augment our model described in the previous section with approx-
imate Coulomb friction. We use friction pyramid approximation of Coulomb friction
using two orthogonal direction vectors on the friction tangent plane. The friction force
acting along the two directions must be resolved such that it opposes the relative tan-
gential motion of the two objects in contact.

We first define the relative velocities along the two tangential directions t1 and t2

as

vTk =
[
−tT

k −(rx × tk)
T tT

k (ry × tk)
T
]
⎡⎢⎢⎢⎢⎣

vx

ωx

vy

ωy

⎤⎥⎥⎥⎥⎦ for k = 1 and 2. (2.38)

Similar to Equation 2.30, we can write the relative tangential velocities of all bodies
in vector form as follows

vT = JTu, s.t. JT ∈ R2n×6m, and (2.39)

vT = [vt11 , vt21 , ..., vt1n , vt2n ]
T s.t. vT ∈ R2n. (2.40)

The matrix JT is the contact Jacobian corresponding to the tangential impulses.
We build the matrix JT similar to JN except that we introduce two rows per contact
corresponding to the two tangential constraints instead of just one in the normal(JN)
case. We can write tangential impulses FT acting on the rigid bodies as

FT = JT
T fT, where (2.41)

fT = [ ft10 , ft20 , ..., ft1n , ft2n ]
T, s.t. fT ∈ R2n. (2.42)

In the above equation, scalars f1i and f2i for i ∈ 1 . . . n are the magnitude of contact
impulses along the two tangential direction t1 and t2. Next, we define the constraints
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imposed by Coulomb’s law as

| ft1i | ≤ µ fi

vt1i ft1i ≤ 0

vt1i(µ fi − | ft1i |) = 0 for all i ∈ 1 . . . n.

(2.43)

In the above equations, the first condition corresponds to the fact that the magni-
tude of contact impulse along the first tangent is not allowed to exceed µ fi. The second
condition corresponds to the dissipation of energy due to friction forces. Essentially,
the tangential force and velocity must be in opposite direction. The final condition as-
serts the static friction case. As long as (µ fi − | fti|) is non zero, the tangential velocity
must be zero. Similarly, we can write the conditions for the second tangential direction
as

| ft2i | ≤ µ fi,

vt2i ft2i ≤ 0,

vt2i(µ fi − | ft2i |) = 0 for all i ∈ 1 . . . n.

. (2.44)

However with the above constraints 2.43 and 2.43, the maximum possible friction
force is

√
2 times µ fi, which is inaccurate. Also, the two constraints only ensure dis-

sipation of energy and not maximal dissipation. Maximal dissipation occurs when vt

and ft are aligned exactly opposite to each other. We can improve the quality by in-
creasing the number of directions used for spanning the friction plane as discussed in
the next section. Similar to Equation 2.36 we can write the relative velocities at the
contact along the normal and tangential direction as[

vN

vT

]
=

[
JN

JT

]
M−1

[
JT
N JT

T

] [fN

fT

]
+

[
JN

JT

]
M−1 Fext∆t +

[
JN

JT

]
ut. (2.45)

To resolve the collisions implementing friction pyramid, we need to solve Equation
2.45 subject to constraints given by Equation 2.33, 2.43 and 2.43. Frictional contact is
commonly solved using Gauss-Siedel. A Recent study [26] proposed a new method for
solving frictional contact using accelerated projected gradient descent (APGD) having
good convergence in several test cases and parallelizability.

2.8.3 Approximate Friction Cone

In this section, we see how we can accurately approximate Coulomb friction cone
without introducing the inherent non-linearity associated with a friction cone. The
Coulomb friction law requires the contact force to lie in a circular cone (or elliptic cone
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for anisotropic friction). This is a difficult condition to deal with since it leads to a
nonlinear complementarity problem which is much more difficult to analyze and/or
to solve numerically. Therefore, the cone is approximated by a polygonal cone. The
idea is very similar to the friction pyramid setting where instead of using just two tan-
gents, we use multiple tangents which spans the friction plane at the point of contact.
Some other linear constraints are also imposed so that the friction forces do not exceed
a certain value.

ni fNi

t0
t1

t2

t3t2k−1

t2k

Diβi
eTβi ≤ µ fNi

FIGURE 2.5: Approximate linearized friction cone. The convex hull
marked with blue is given by the condition eTβi = µ fNi. The direc-

tion of the net tangential force Diβi is shown using dashed arrows.

The net contact forces acting at the point of contact p is given as

FC(p) = { fNini + Diβi| fNi ≥ 0; βi ≥ 0; eTβi ≤ µ fNi}. (2.46)

The above function FC is known as the linearized friction cone. We define ni as
the outward unit normal at contact point i and a set of paired unit tangent vectors
tji for j = 1 . . . 2k, such that, |tji| = 1 and t(2j−1)i = −t(2j)i, for j = 1 . . . k. In sim-
pler words, the tangent vectors appear in opposing pairs as shown in Figure 2.5. We
assemble the tangents column wise into matrix Di = {t0i, t1i . . . t(2k)i}. Scalar fNi is
magnitude of the normal force or impulse at the point of contact. The vector βi ∈ R2k

is the tangential counterpart of the normal forces. Each scalar component of βi is the
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magnitude of the force or impulse acting along the tangential directions. The vector
e = {1, 1, . . . 1}.

The net force acting along the tangential direction is given by Diβi. While in fric-
tion pyramid setting, we did not put any limit on the magnitude of the net tangential
forces whereas in polygonal approximation of friction cone, sum of the magnitude of
tangential forces are not allowed to exceed µ fNi which forces the net tangential force
to remain within the boundary marked by the blue convex hull as shown in Figure 2.5.

Using the principle of maximum energy dissipation, the net force in the tangent
plane must oppose the relative tangential velocity (if any). We can write the condition
as

min
β

(Dβ) · vrel

= min
β

βT(DTvrel)

= min
β

βT

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎣
−tT

0 −(rx × t0)T tT
0 (ry × t0)T

...
...

−tT
2k −(rx × t2k)

T tT
2k (ry × t2k)

T

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

vx

ωx

vy

ωy

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ .

(2.47)

Using the above equation and inequality constraints from Equation 2.46, we can
write the Lagrangian for the system as

L = βT

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎣
−tT

0 −(rx × t0)T tT
0 (ry × t0)T

...
...

−tT
2k −(rx × t2k)

T tT
2k (ry × t2k)

T

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

vx

ωx

vy

ωy

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠− αT β − λ(µ fN − eTβ).

(2.48)
Differentiating w.r.t β and λ we obtain the following complementarity conditions

⎡⎢⎢⎣
−tT

0 −(rx × t0)T tT
0 (ry × t0)T

...
−tT

2k −(rx × t2k)
T tT

2k (ry × t2k)
T

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

vx

ωx

vy

ωy

⎤⎥⎥⎥⎥⎦+ eλ ≥ 0, compl. β ≥ 0

µ fN − eTβ ≥ 0, compl. λ ≥ 0.

(2.49)

We write the discretized equation of motion for all rigid bodies in the system as

ut+1 = M−1
[

JT
N JT

T

] [fN

β̃

]
+ ut + M−1Fext∆t where (2.50)
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β̃ =
[

β0 β1 . . . βn

]T
. (2.51)

In Equation 2.50, similar to friction pyramid setting, the constraint Jacobian for
tangential constraints is JT ∈ R2kn×6m, where n is the number of contacts, m is the
number of rigid bodies and k is the number of tangents spanning the tangent plane at
each contact. Vector β̃ is constructed by concatenating the tangential impulses βi for
all n contacts.

Next, we rewrite complementarity condition outlined by Equation 2.49 for all rigid
bodies as

JTut+1 + Eλ̃ ≥ 0 compl. β̃ ≥ 0

UfN − ET β̃ ≥ 0 compl. λ̃ ≥ 0.
(2.52)

In the above equation, we define matrices E, U, and the vector λ̃ as

E = diag(e0, e1, ..., en), E ∈ R2kn×n

U = diag(µ0, µ1, ..., µn), U ∈ Rn×n

λ̃ =
[
λ0 λ1 . . . λn

]T
.

(2.53)

In the above equation, the function diag creates a matrix as follows

diag(e0, e1...en) =

⎡⎢⎢⎢⎢⎣
e0 0 · · · 0
0 e1 · · · 0
...

... . . . ...
0 0 · · · en

⎤⎥⎥⎥⎥⎦ and

e0 = e1 = . . . en =

⎡⎢⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎥⎦ ∈ R2k×1.

We now rewrite Equation 2.50 and complementarity condition 2.52 in matrix nota-
tion as [1] ⎡⎢⎢⎢⎢⎣

I M−1 JT
N M−1 JT

T 0
JN 0 0 0
JT 0 0 E
0 U −ET 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

ut+1

fN

β̃

λ̃

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
ut + Fext∆t

0
0
0

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0
ρ̃

σ̃

ζ̃

⎤⎥⎥⎥⎥⎦ (2.54)
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⎡⎢⎣fN

β̃

λ̃

⎤⎥⎦
T ⎡⎢⎣ρ̃

σ̃

ζ̃

⎤⎥⎦ = 0,

⎡⎢⎣fN

β̃

λ̃

⎤⎥⎦ ≥ 0, and

⎡⎢⎣ρ̃

σ̃

ζ̃

⎤⎥⎦ ≥ 0 (2.55)

This kind of formulation is known as dual formulation and variables ρ̃, σ̃, ζ̃ are
slack variables. Anitescu et al. [1] showed that Equation 2.54 and 2.55 can be solved
using Lemke’s algorithm; however there can be more than one solution to the problem.

2.8.4 Data Driven Techniques

Jiang et al. [19] proposed a data driven technique where they augment traditional con-
tact with data driven approach for rigid bodies. They train a classifier and a regressor
using synthetic data. The classifier is used to identify the regime in which the contact
operates i.e. static, dynamic or separating. In the static case, they use a traditional
solver with an additional constraint forcing the point in contact to have zero veloc-
ity. For separating case, they simply don’t apply any impulses. In the dynamic case,
they decouple the constraint impulse into a normal and tangential component. The
normal component of the impulse is again solved using traditional techniques such
that it doesn’t violate the non-penetration constraint. For the tangential component,
they use the regressors to predict the tangential friction force. The author showed the
validity of their method in the 2D case for a single rigid object as well as for articu-
lated joints. The data is obtained from DART simulator which uses an approximate
coulomb friction.

2.9 Soft Body Models

As shown in Figure 2.6, a straightforward approach for modeling soft body systems is
to use lumped masses with internal forces between the point masses holding the sys-
tem together. The internal forces can be modeled using a mass-spring system or using
finite element elastic models. The equation of motion for general soft body system is
given by

Mẍ + (αM + βK(x))ẋ + fint(x) = fext. (2.56)

In the above equation, vector x ∈ R3n is the position of the particles in the system.
The matrix M is the diagonal mass matrix. The matrix K, also known as the stiffness
matrix is usually a function of the configuration of the particles in the system. The
stiffness matrix indicates the connectivity among the particles and how strong the in-
teraction between them is. The scalar quantity α and β are known as the Rayleigh



30 Chapter 2. Literature Survey

Soft Body Lumped mass discretization

mi

mj
fij

FIGURE 2.6: Discretization of soft a body. The mass of the soft body
is distributed over lumped masses mi and internal forces fij hold the

masses together.

damping parameters. Increasing α is like increasing viscous damping where motion
in any direction is damped equally proportional to its mass and coefficient α. Increas-
ing the parameter β causes relative motion between a pair of particles to reduce. The
vector fint gives the internal forces acting on each particle whereas fext models the
external forces like gravity and collisions forces.

2.9.1 Soft Body Contact

px = rx(sx, qx)

py = ry(sy, qy)

n

Conatct : px = py

FIGURE 2.7: Soft body contact for two arbitrary soft bodies with dif-
ferent parameterizations. A position px on soft body X (in red) is a
function of parameters sx and qx while position pyon soft body Y is a

parameterized by sy and qy

A position p on a body can be defined as a function of its degrees of freedom q
and a parameter s which uniquely identifies the position on the body. Degrees of
freedom explains the configuration of the body in space. For example, in a lumped
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mass tetrahedron, the number of degrees of freedom is 12 i.e. 3 for each vertex. The
number of degrees of freedom required to specify a rigid body of any shape is just 6.
Given the configuration of the body, the parameter s uniquely identifies any position
on the body. For example, barycentric coordinates of triangle or tetrahedron. Usually
we consider s independent of q. Hence for any soft or rigid model

p = r(s, q), p ∈ R3. (2.57)

We find the velocity of a point on the body assuming s is not changing with time
as

v =
dp
dt

=
∂p
∂q

q̇. (2.58)

As shown in Figure 2.7, let us consider two soft bodies in contact. The relative
motion between the two bodies X and Y at the point of contact is given by

uxy =
[

∂px
∂qx

− ∂py
∂qy

] [q̇x

q̇y

]
. (2.59)

We can write the relative contact velocity for all contacts in the system as

u = Jq̇, s.t., J ∈ R3n×m. (2.60)

The scalar n is the number of contacts and m is the total number of degrees of
freedom for the system. Matrix J is the contact Jacobian. In the Equation 2.60, the ith

row of J is given as

Ji =
[
0 . . . ∂px

∂qx
. . . − ∂py

∂qy
. . . 0

]
. (2.61)

We can write the equation of motion as

Mq̈ + fint = JTf. (2.62)

In the above equation, f is the force acting at the point of contacts and is unknown.
To avoid interpenetration, the normal component of u must be zero. This condition is
along with Equation 2.62 can be used to solve the equation of motion in the frictionless
case.
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2.9.2 True Friction Cone

In this section, we provide a functional characterization of Coulomb friction [6]. We
find a function F in R3 × R3 → R3 such that

F(ui, fi) = 0, s.t. (ui, fi) ∈ Contact(ni, µi) f or all i ∈ 1...n. (2.63)

Here, the contact normal ni and coefficient of friction µi uniquely identifies the ith

contact. The vector ui and fi denotes the relative velocity at the contact and contact
force respectively. The function F is split into normal and tangential component as
follows

F(ui, fi) =

[
FN(uNi, fNi)

FT(uTi, fTi)

]
. (2.64)

The normal and tangential components are given as

FN(ui, fi) =

⎧⎨⎩R3 × R3 → R

PR+( fN − uN)− fN

(2.65)

FT(ui, fi) =

⎧⎨⎩R3 × R3 → R2

PB(0, µirn)(fTi − uTi)− fTi.
(2.66)

Here, function PR+(x) clamps the argument in [0, ∞) range. Function B(0, x) de-
fines a 2D circle centered at zero with radius x. The function PB(0, a)(x) clamps the
length of x between 0 to a, without changing its direction.

The function F is simple to understand if we look at each case individually. In
all three cases - static, dynamic and separating, the function F must evaluate to zero.
First, we consider the case when uN > 0. In this case fN = 0 and fT = 0 since there
is no contact or the contact is breaking. Hence FN(u, f) = 0. Using the fact that
PB(0,0)(x) = 0, we can verify FT(u, f) = 0. In the sticking case, we have u = 0 and
fN > 0. Therefore, PR+( fN) = fN and hence FN(u, f) = 0. Similarly, FT(u, f) = 0 as
PB(0, µirn)(fT) = fT. Finally in the sliding case, we have uN = 0 and due to principle
of maximum dissipation we have direction of fT and uT opposing each other. Hence,
PB(0, µirn)(fT − uT) = PB(0, µirn)(αfT) = fT, where α ≥ 1. Hence both FN and FT are
zero in sliding case.

Now we need to solve Equation 2.62 and 2.63 simultaneously. We first discretize
Equation 2.62 as

q̇t+1 = M−1 JTf − M−1fint + q̇t. (2.67)
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Here, we assume the forces are impulsive in type. Using Equation 2.60 we have

u = Jq̇t+1 = JM−1 JTf − JM−1fint + Jq̇t. (2.68)

We can write the above equation in simplified notation as

u = Wf + b. (2.69)

Substituting u in Equation 2.63 we get our final equation which we solve using non
smooth Newton method

F(Wf + b, f) = 0. (2.70)

2.9.3 Data Driven Techniques

Chen et al. [11] use data obtained from real world measurement to augment their soft
body collision model. They use mechanical setup to capture friction force to load
curves for various materials. The normal force is obtained using non-interpretation
constraint which is used to find the associated friction force from the data captured
using measurements. However, unlike the approach described in the last section, their
approach does not solve the contact assuming coupled normal and friction forces. Sim-
ilar to Pabst et. al., 2009 they use a R2×2 matrix to describe anisotropy. Each element of
the matrix is a scalar function of normal load derived from real world measurements.

In the next Chapter, we will discuss the theory and implementation details of our
simulator.
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Chapter 3

Implementation

We provide a detailed overview of our simulator. Our simulator setup consists of two
non-rigid elastic bodies which are brought into contact with desired normal force and
brushed against each other. We record various parameters during our simulation and
analyze the data to compute the coefficient of friction. We start with a brief descrip-
tion of the fundamental principles of elastic solids and how we discretize them for
implementation [38] on a digital computer. We then discuss Rayleigh damping and
computation of damping parameters. Damping is important for numerical stability
and for investigating its impact on coefficient friction. For simulating quasi-static dy-
namic friction, the case when the relative motion is small, we discuss computation
of the parameters to critically damp the system to remove spurious vibrations. We al-
ready know the geometry of the contact has a profound impact on friction. We provide
a recipe for generating rough surfaces and how we convert the surface to volumet-
ric soft body. The most challenging aspect of soft body contact modeling is collision
detection and resolution [11, 17]. We provide an in-depth overview of our collision
detection and resolution in both 2D and 3D case. Finally, we discuss our time step-
ping scheme and how we factor in collision detection and resolution in the integration
scheme.

3.1 Deformation Map and Deformation Gradient

In many ways, elastic solids are similar to a mass-spring system but are significantly
different in terms of computing the internal forces. One can think of elastic solid de-
formation as a transformation map applied to each position of an undeformed solid.
The transformation may or may not preserve the original geometry. In fact, the rela-
tive distance between two points on the body may be closer or farther apart after the
transformation. The transformation function is called the deformation map.
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X ϕ

x

Before deformation After deformation

FIGURE 3.1: Deformation map denoted by ϕ.

A point on the undeformed shape denoted by X and the same point after deforma-
tion is denoted by x. The two are related using deformation map as

x = ϕ(X). (3.1)

It should be noted that both affine and non-affine transformations are encoded by
ϕ. Usually, we want the internal energy of the soft body invariant to rotation and
translation.

Deformation gradient is a very important quantity which denotes how much x
changes when X is changed. Intuitively, we can think of the deformation gradient as
an indicator of how much amplified or diminished the motion of the material is due to
perturbation in X. Hence the determinant of F gives the relative change in the volume
of the soft body due to deformation. Since it is a matrix, it also indicates the direction
along which material deforms due to a perturbation in X.

F(X) =
∂x
∂X

=
∂ϕ(X)

∂X
. (3.2)

Here, F ∈ R3×3 is the deformation gradient and is a crucial ingredient for building
other tensors.

3.2 Energy Density and Internal Force

A material is called hyper-elastic when its associated internal potential energy de-
pends only on the final configuration of the material. We define an energy density
function which indicates the energy stored per unit volume of the material. The en-
ergy density function is not a constant because a material may not be uniformly de-
formed over its entire volume. Some parts of the material may deform more and store
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more energy in those parts. For hyperelastic materials, we define energy density as
follows

ψ(x) = ψ(ϕ(X)). (3.3)

Here, ψ : R3 → R defines the energy stored in infinitesimal volume around X. We
now look at how deformation map and energy density are related. For small defor-
mation, using Taylor series expansion of deformation map ϕ centered around X0 we
have,

ϕ(X) = ϕ(X0) +
∂ϕ

∂X
(X − X0)

= F(X0)X + t.
(3.4)

The constant factor t in Equation 3.4 is equivalent to a translation of the material
and does not cause any change in potential energy of the material. In the case of rota-
tionally invariant material, rigid rotation of the body does not result in an increase in
potential energy. However, rigid rotations are embedded within deformation gradient
F and it is possible to factor out the rigid rotations using Singular Value Decomposi-
tion or other matrix decomposition techniques. Corotational linear elasticity takes this
approach. It is also possible to make ψ rotationally invariant by using FTF instead of
F. Using Equation 3.4 we can say that for small deformation energy density ψ is a
function of deformation gradient F and is given by ψ(F(X)).

Now we have defined energy density and established its dependence on the defor-
mation gradient, we would like to extract a more useful quantity, internal force. We
first compute the potential energy of the configuration x around domain Ω as

E(x; Ω) =
∫

Ω
ψ(F(X))dX. (3.5)

Next we compute the force acting at position x due to volume Ω as

fT = −∂E(x; Ω)

∂x
. (3.6)

In Section 3.4, we will apply Equation 3.6 to discretized soft body.

3.3 Neohookean Material

There are many different formulations of energy density ψ which conforms to differ-
ent properties in an elastic material. We choose Neohookean material because it is
rotationally invariant, isotropic and resistant to forcible compression. The model for
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Neohookean elasticity, defined in terms of strain energy as

ψ(F) =
µ

2
(I − 3)− µ log(J) +

λ

2
log2(J), (3.7)

where µ and λ are Lame coefficients, which are related to Young’s modulus k and Poisson
ratio ν as

µ =
k

2(1 + ν)

λ =
kν

(1 + ν)(1 − 2ν)
.

(3.8)

In Equation 3.8, Young’s Modulus k is a measure of resistance to stretching while
Poisson ratio ν is a measure of incompressibility. The quantity I and J are defined as
follows

J = det(F)

I = trace(FTF)
. (3.9)

The log2 term in Equation 3.7 makes the material resistant to deformation. As the
material is compressed, J tends to zero while log terms go towards infinity. Intuitively,
J is the relative volume of the material with respect to the rest configuration. It should
also be noted that Neohookean material ψ is rotationally invariant and isotropic be-
cause the quantity J and I remain unchanged if we pre or post multiply deformation
gradient F with a rotation matrix. Mathematically, we define rotational invariance and
isotropy as

Rotational invariance: ψ(RF) = ψ(F)

Isotropy: ψ(FQ) = ψ(F)
(3.10)

In the equations above, matrices Q and R are rotation matrices. We call Equation
3.7 rotationally invariant because the strain energy ψ does not change due to rigid
rotations defined by matrix R. Also deforming the material by equivalent amount(F)
along any of its axis defined by matrix Q results in same potential energy. Hence, we
call the material isotropic. It should be noted, even though theoretically it is impossible
to compress the material to zero, due to numerical errors and discrete time stepping,
the material might get into invalid configurations or invert itself. Thee are numerous
ways to recover from inversion. Smith et al. [39] handles the issue by preventing the
use of log terms in strain energy. Instead they use −µ(J − 1) + λ

2 (J − 1)2 replacing the
two log terms in Equation 3.7. It is interesting to note that the new definition is a first
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order Taylor expansion of function log(J) at J = 1. The new energy definition allows
the material to eventually return to stable state once it is inverted. In our case we
prevent inversion by storing the last valid configuration and load it whenever J ≤ 0.

3.4 Discretization

So far, we have only concerned ourselves with the continuous case, where the inter-
nal stresses vary continuously over its entire volume. In this section, we discuss the
discretization of the continuous space into piecewise linear elements using tetrahedral
mesh [38]. We use TetGen (3D) [37] and Triangle (2D) [36] for discretization of a hollow
mesh into tetrahedrons (3D) or triangles (2D).

X0

X1

X2

X3

ϕ(.)

x0

x1

x2

x3

Before deformation After deformation

FIGURE 3.2: Deformation of discrete elements.

Let us first look at a single tetrahedral element. For any location X within this
element, we can write the deformed configuration x using tailor series expansion cen-
tered around X∗ as

x = F(X∗)X + C(X∗). (3.11)

For linear tetrahedral element, we assume F(X∗) and C(X∗) to be constant over
the volume of a tetrahedron. This introduces another approximation error but is min-
imized when the material is stiff or the tetrahedrons are small. Writing Equation 3.11
for the four vertices of the tetrahedron we have

x0 = FX0 + C

x1 = FX1 + C

x2 = FX2 + C

x3 = FX3 + C.

(3.12)
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We can rearrange Equation 3.12 and compute F in terms of deformed configuration
and reference configuration as follows

F =
[
x0 − x3 x1 − x3 x2 − x3

] [
X0 − X3 X1 − X3 X2 − X3

]−1

= DsD−1
m .

(3.13)

We see that matrix Dm ∈ R3×3 does not change with time as it only depends on the
rest configuration. Hence should be precomputed before starting the simulation.

So far we have introduced error from three sources:

• Error due to spatial discretization.

• Error due to truncating Taylor series in Equation 3.11.

• Error due to the assumption that F and C are invariant within the tetrahedral
element.

Once we have deformation gradient, we can compute energy density using Equa-
tion 3.5 as follows

E(x; Ω) =
∫

Ω
ψ(F(X))dX = ψ(F)

∫
Ω

dX = ψ(F)V. (3.14)

Here, V is the volume of the domain Ω, which in case of Equation 3.14 is the volume
of the tetrahedral element. Next, using Equation 3.6 we can compute the force exerted
by the domain Ω on ith vertex xi, i ∈ 0..3 as

fT
i = −∂E(Ω)

∂xi
= −V

∂ψ(F)
∂xi

. (3.15)

Now let xij denote the jth component of xi. Using chain rule for matrix functions
we can write

fij = −V tr

[(
∂ψ(F)

∂F

)T ∂F
∂xij

]
= −V tr

⎡⎣∂ψ(F)
∂F

(
∂F
∂xij

)T
⎤⎦ . (3.16)

In the above equation, ∂ψ(F)/∂F is also known as Piola stress tensor and can be
derived by differentiating equation 3.7 with respect to F as

∂ψ(F)
∂F

= µ(F − F−T) + λ log(J) F−T. (3.17)
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Similarly, differentiating Equation 3.13 with respect to xij for i = 0, 1, 2, we obtain

∂F
∂xij

= ejei
TD−1

m . (3.18)

Plugging the values of ∂ψ(F)/∂F and ∂F/∂xij into equation 3.16 we have

fij =

[
V

∂ψ(F)
∂F

D−T
m

]
ij

for vertex 0,1 and 2. (3.19)

We can write equation 3.19 in vector form as

[
f0 f1 f2

]
= V

∂ψ(F)
∂F

D−T
m (3.20)

Now using the condition for static equilibrium, we have

f3 = −(f0 + f1 + f2). (3.21)

A node or vertex may be shared with multiple tetrahedrons and we need to ac-
cumulate forces from all tetrahedron sharing a node. In our implementation we loop
over all tetrahedra, accumulating the force at its vertices. We also use multiple threads
for computing the forces and use mutex locks to update the accumulation buffer.

3.5 Generating Surfaces

We can split surface generation into following steps - constructing a height field, sub-
sampling, adding depth and boundary markers to the surface to form a volume, mesh-
ing and finally discretize the volume.

The first step in generating a surface is to generate a height field. There are multiple
ways to generate height field - texture maps, normal maps or noise. In our case, we
use noise because it is procedural and offers easier control over various parameters.
We have a variety of noise algorithms to choose from. The Figure 3.3 shows different
noise samples and their magnitude spectrum. All noise signals in the figure have
the same energy but differ in the way the energy is distributed over its frequencies.
Gabor [24] noise allows the control of parameters like orientation, power spectrum
and bandwidth of the noise. By controlling these parameters it is possible to generate
anisotropic surfaces similar to wood or brushed plastic.

Next step is to subsample the height field. Subsampling allows further control over
the frequency spectrum of the generated noise. We use Poisson disc sampling [9] to
subsample the height field because it produces tightly packed sample points while
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Uniform Pink Gabor

FIGURE 3.3: Noise samples (top) and their associated frequency spec-
trum (bottom).See that Gabor noise shows anisotropic properties both

in signal space and frequency space.

Wireframe Mesh Shaded

FIGURE 3.4: Delaunay triangulation of the boundary markers to gener-
ate a hollow mesh.
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maintaining a minimum distance between them. The minimum distance is computed
as

dmin =
1

2 fmax
. (3.22)

In the above equation, fmax is the maximum frequency we would like to keep in
our surface. Next we add additional boundary markers to define the thickness of the
material and use Delaunay triangulation to generate the boundary mesh as shown in
Figure 3.4.

FIGURE 3.5: Cross section of an adaptively discretized volume. Size of
the tetrahedrons reduces as we go from flat base to noisy top.

Finally as shown in Figure 3.5, we use Tetgen [37] to adaptively discretize the
volume into a tetrahedral mesh. Adaptive discretization uses larger tetrahedrons in
the interior of the volume while using smaller tetrahedrons near the surface. Tetgen
automatically adds points in the interior of the volume, known as Steiner points to
break the volume adaptively. Adaptive discretization drastically reduces the number
of tetrahedrons required compared to uniform discretization.

3.6 Rayleigh Damping

So far, we have not introduced any damping effects other than numerical damping in
our simulation. Damping is also important for numerical stability and we also found
damping to affect friction between the materials.

Rayleigh damping model is composed of two parts, first is the mass-based damp-
ing and the second is the stiffness based damping. The net force due Rayleigh damp-
ing is as follows

fdamp = (α M + β K(x))ẋ, (3.23)

where M is a diagonal mass matrix while K(x) is the stiffness matrix for the soft body.
Scalars, α and β are proportionality constants and we already discussed their effects
in Section 2.9. We do not explicitly assemble matrix M or K but compute their effects
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in a distributed fashion. It should be noted that while mass-based damping damps
out the motion of the soft body as a whole while stiffness based damping damps the
relative motion between the nodes. Hence stiffness based damping needs to obey
conservation of momentum similar to the internal forces. For each vertex in the soft
body, we compute the force due to mass-based damping as follows

fmass = mαẋ, (3.24)

where m is the point mass of the node, ẋ is the velocity of the node and fmass is the
force acting on the vertex due to mass-based damping.

We compute the stiffness based damping for each tetrahedron in the same way as
internal forces. Looking at the equation of stiffness and stiffness based damping we
have

fstiff = β
∂f
∂x

dx
dt

, (3.25)

where f is the net force acting on a vertex and x is the position of the vertex. The
quantity ∂f

∂x is known as the stiffness. In our case, we cannot find stiffness analytically,
but we can compute the product of stiffness and velocity by numerical means. We
introduce the concept of force differential defined as

δf =
∂f
∂x

dx. (3.26)

Our aim is to directly find the force differential δf numerically. The deformation
gradient F depends on the configuration x. Following Equation 3.13, the differential
of the deformation gradient is given by

δF =
[
δx0 − δx3 δx1 − δx3 δx2 − δx3

] [
X0 − X3 X1 − X3 X2 − X3

]−1

= (
[
ẋ0 − ẋ3 ẋ1 − ẋ3 ẋ2 − ẋ3

]
dt)
[
X0 − X3 X1 − X3 X2 − X3

]−1

= δDsD−1
m ,

(3.27)

where xi are the vertices of the tetrahedron and ẋi are the velocities of the correspond-
ing vertices. We compute δDs from the difference of the nodal velocities and multi-
plying with time step. Next, we compute the differential of Piola stress tensor derived
from Equation 3.17 and is defined as

δ
∂ψ(F)

∂F
= µ δF + [µ − λ log(J)]F−TδFTF−T + λ tr(F−1δF)F−T. (3.28)

We plug in the differential of the deformation gradient from Equation 3.27 and
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evaluate the above equation. Similar to Equation 3.20, we can write force differential
in compact form as [

δf0 δf1 δf2

]
= V δ

∂ψ(F)
∂F

D−T
m . (3.29)

Since the differential forces are internal forces, the forces must balance. We obtain
the force differential for the fourth vertex as

δf3 = −(δf1 + δf2 + δf3). (3.30)

Finally, we compute stiffness damping force as

fstiff = β
δfi

dt
for i ∈ [0, 3]. (3.31)

Once we have the damping forces for all four vertices of the tetrahedron, we accumu-
late these forces in a similar manner to the internal forces.

3.7 Computing Stiffness Matrix (K)

We do not need to compute the stiffness matrix explicitly for our simulation, we need
to find the matrix K for the purpose of computing critical damping factor. We use
the standard technique called unit displacement method. Looking at Equation 3.26, if
we assume a 1D system and set dx = 1 and dt = 1, then the force differential is same
as stiffness. In other words, computing the force differential using unit velocity is
equivalent to computing stiffness. We extend the same idea to general n-dimensional
case by assuming the velocity a unit vector in n-dimension. To get the kth column of
stiffness matrix, we set the velocity of the vertices in the soft body as

ẋ = ek s.t. ek ∈ R3n and k ∈ [0, 3n − 1] (3.32)

In the above equation, n is the number of vertices in 3D. Using the new velocities
and setting dt and β to 1, we compute the Equation 3.31 for all tetrahedra and accu-
mulate the forces on each node. These nodal forces, when concatenated into a vector,
form the kth column of the stiffness matrix. We repeat the step for all 3n columns.

3.8 Computing Critical Damping

Our motivation for computing critical damping is to make our system quasi-static.
For experimenting with static friction and the transition to kinetic friction, we do not
want large particle velocities in our system. We can control the average motion of the
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soft body by controlling the applied external forces, but individual particles remain
beyond explicit control. Hence, we try to control the individual particle velocity by
critically damping the soft body.

Underdamped

Critical

Overdamped

q

time

FIGURE 3.6: System response under different level of damping.

For any soft body system, the constituting vertices can move in some directions
more than the others. In most cases, the system has few main modes along which
body’s motion is concentrated. Like a mass-spring system, elastic materials also ex-
hibit periodic oscillations or vibrations along these modes. Critical damping is the
minimum damping required to eliminate all vibration along a mode. See Figure 3.6.
In our case, we use critical damping as our initial set point for the parameters α and β.

We first look at the natural motion of the body. If we imagine plucking a guitar
string, the motion of the string after excitation is its natural motion. Hence, the natural
motion of the body is defined as the motion of the body without any external forces
and is given as

Mẍ + (αM + βK(x))ẋ + fint(x) = 0, (3.33)

where we can think of x as the configuration immediately after plucking the string. We
should compute K around this excited configuration but in practice, we only compute
K around the reference position. This is a good approximation for stiff rigid bodies
which do not produce much deformation. We also replace fint(x) by approximation
Kx. Note that these simplifying approximations are only used for computing the criti-
cal damping factor.

ẍ + (α + βM−1K)ẋ + M−1Kx = 0. (3.34)
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Since, K is not necessarily diagonal, it is not be possible to decouple Equation 3.34
into multiple independent differential equations directly. Hence, we use eigenvalue
decomposition of M−1K to decouple Equation 3.34. Matrix M−1K is symmetric posi-
tive indefinite since K is symmetric positive indefinite around reference position and
M is a diagonal matrix [38]. Using eigenvalue decomposition of M−1K, we have

M−1K = UΛUT. (3.35)

The matrix Λ is a diagonal matrix of eigenvalues. Each column of matrix U repre-
sents an eigenvector and its corresponding eigenvalue along the diagonal of Λ. Eigen-
values for positive indefinite matrices are real. We may have six eigenvalues which are
zero magnitude that corresponds to rigid translations and rotations. Pre-multiplying
Equation 3.34 by UT we obtain

q̈ + (α + βΛ)q̇ + Λq = 0. (3.36)

In the above equation, we substituted UTx as q. Since Λ is the diagonal matrix, we can
write the above equation as multiple independent differential equations. In our case,
we compute α and β for the largest eigenvalue denoted by Λ0. Hence we can write the
one dimensional differential equation as

q̈0 + (α + β Λ0)q̇0 + Λ0 q0 = 0. (3.37)

Studying the characteristic equation for the above differential equation, we obtain

α + β Λ0 = 2
√

Λ0. (3.38)

The values of α and β that satisfies the above equation produce critically damped
motion in the highest frequency mode. We can make other lower frequency modes
over damped if α and β satisfy the following additional constraints

α ≥ 2(
√

Λ0Λ1 −
√

Λ1Λ0)

Λ1 − Λ0
and β ≤ 2(

√
Λ0 −

√
Λ1)

Λ0 − Λ1
, (3.39)

where Λ1 is the second largest eigenvalue.
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3.9 Soft Body Collision

Collision detection and resolution [27] for soft bodies with arbitrary geometry is the
most computationally expensive step in our simulation. It accounts for around 50 per-
cent of compute time in the 2D case and more than 70 percent in 3D. Using continuous
collision detection is prohibitively expensive because of the large number of triangles
(in 2D) or tetrahedra (in 3D). Hence we use spatial hashing with penalty forces [17, 25]
to detect and resolve collisions.

3.9.1 Spatial Hashing

We use a spatial hash structure to accelerate the collision detection process. Spatial
hash is a hash table where the key is position in space and the table itself represents
the space as a uniform grid. We choose the cell size of the hash table such that the
repulsive forces diminish nearly to zero after one cell distance. This minimizes the
discontinuity in the force field for a particle moving in or out of a cell. At each time
step, the particles are hashed into cells. We loop over each edge (in 2D) or tetrahedron
(in 3D) and perform a lookup into the table to query the neighborhood particles. The
pair obtained is passed for collision resolution using repulsive forces.

3.9.2 Penalty Forces in 2D

In the 2D case, we implement edge-particle and particle-particle collision using repul-
sive forces.

x

H

A B

C

P

FIGURE 3.7: Modeling edge-particle collision. Position P is the projec-
tion of AC on AB. We do not allow the particle C to come any closer

than distance H from the edge AB.



3.9. Soft Body Collision 49

In the above figure, scalar H is the minimum allowed distance between an edge
and a particle. At the end of each time step, no particle should be inside the region
bounded by the dashed capsule in Figure 3.7. Scalar x is the distance between an edge
and a particle. We define x as follows

α =
AC · AB

||AC|| ||AB|| (3.40)

x =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
||AC − αAB|| if 0 ≤ α ≤ 1

||AC|| if α < 0

||BC|| otherwise

. (3.41)

The magnitude of repulsive forces are given by

frep =

⎧⎨⎩
K

(x−H)2 i f x ≥ H
K
x2 i f x < H

(3.42)

We apply the principle of conservation of energy and momentum to solve for col-
lision impulses. Our algorithm first computes the work done by the force field due to
the relative velocity between edge and particle in one time step. Assuming the edge
as a point mass concentrated at position P (see Figure 3.7) and using conservation of
energy and momentum, we compute the impulse velocity needed to resolve collision
for the particle and simplified edge. Finally, we distribute the collision impulse for the
simplified edge among its constituent two particles such that the energy of the system
does not increase.

Overall algorithm for collision detection and response is given by Algorithm 1.
There are three functions which we did not define inside the body of algorithm - kill-
NormalVelocity(), solve() and distribute().

We compute the effective velocity of the edge by weighing the velocities of the two
vertices on the edge by α obtained using Equation 3.40. Note that α is unrelated to
the coefficient of mass based damping in Rayleigh damping model. We compute the
effective mass as

1
medge

=
1 − α

mA
+

α

mB
(3.43)

The direction of normal is given by the direction of x obtained from Equation 3.41.
We compute the relative normal speed between the edge and particle as follows

vrel = (vC − vedge) · n (3.44)
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Algorithm 1: Collision detection and resolution algorithm.
Input: vrel, x, dt
Output: Collision impulses along normal: ∆vC ∆vA ∆vB
dx = vrel dt;
// kill relative normal velocity between edge and particle
flag = false;
if vrel < 0 and x + dx < H then

flag = true;

// Find work done by the force field ∆E
if x < H then

∆E = K dx
x(x+dx)

else
∆E = K dx

(x−H)(x+dx−H)

limit = − v2
rel

2(m−1
edge+m−1

C )
;

// System of equations are inconsistent
if ∆E < limit then

flag = true;

if flag is true then
∆vC, ∆vedge = killNormalVelocity();

else
∆vC, ∆vedge = solve(∆E, vrel);

∆vA ∆vB = distribute(∆vedge);
return ∆vC, ∆vA ∆vB;

The first function killNormalVelocity() is used when the time step is too large or
when the system of equations is unsolvable. The purpose of this function is to force
vrel to zero at the end of time step. We solve the following equations for ∆vc and ∆vedge.

vrel + ∆vc − ∆vedge = 0, and (3.45)

mC ∆vc + medge ∆vedge = 0. (3.46)

Equation 3.45 corresponds to the fact that we want zero relative normal velocity at
the end of the time step whereas Equation 3.46 is conservation of momentum between
edge and particle.

The second function solve() is used when the system of equations are consistent
and to solve for ∆vc and ∆vedge using energy and momentum conservation. Energy
conservation is given by ∆E = Change in Kinetic Energy and momentum conservation
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is the second Equation in 3.47.

∆E = 0.5 mC ∆vc(2vC · n + ∆vc) + 0.5 medge ∆vedge(2vedge · n + ∆vedge) ,

mC ∆vc + medge ∆vedge = 0.
(3.47)

Energy change of the edge-particle pair due to the force field is given by ∆E and is
computed by integrating Equation 3.42 from 0 to vrel dt. The exact expression for ∆E
is provided inside the body of Algorithm 1. It should be noted that Equation 3.47 has
two solutions. We choose the one that increases the relative normal velocity, that is
∆vc - ∆vedge > 0.

The last function distribute() is used to divide the impulse medge ∆vedge among its
constituents mA ∆vA and mB ∆vB. We distribute the impulses such that

medge ∆v2
edge ≥ mA ∆v2

A + mB ∆v2
B. (3.48)

We found solving for the following simple heuristic to work well

∆vedge = (1 − α)∆vA + α∆vB and

∆vA =

⎧⎨⎩0 i f α ≥ 0.5

∆vedge/(1 − α) otherwise

. (3.49)

Our algorithm is robust and interpenetration free even for large time steps. Since
collisions are solved analytically, it is also faster compared to continuous collision de-
tection. The only drawback is we need to tune the stiffness parameter K to make the
collisions more accurate and stable.

3.9.3 Penalty Forces in 3D

We have a vastly greater number of tetrahedrons and order of magnitude more con-
tacts at each time step in 3D compared to the 2D case. It is not possible to consider
face-particle, edge-edge, edge-particle and particle-particle collisions for so many con-
tacts in a meaningful time budget for each frame. Hence, we use a simpler strategy
and make use of SIMD intrinsic for better scalability with the number of contacts.

We first sample points on the boundary tetrahedra of the two interacting surfaces.
These points serve as the nodes of interaction between two adjacent tetrahedra be-
longing to the two surfaces. The repulsive forces act between the points sampled as
shown in Figure 3.8. We use sampling density as our parameter to control the den-
sity of points on the surface. For each sampled point, we keep track of the index of
the vertex closest to the sampled point and the index of the tetrahedron on which the
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Tetrahedron vertex

Sampled points

Centroid

Outward
direction

Repulsive forces

FIGURE 3.8: Modeling tetrahedron-tetrahedron collision. The repulsive
forces act between the sampled points on the tetrahedron.

point was sampled. The sampled points are stored in barycentric coordinates and con-
verted to world coordinates during simulation. These steps are performed only once
at initialization.

Inside the simulation loop, we compute the repulsive force between each pair of
sampled points. We also compute the outward direction as the difference between the
centroid and the sampled point as shown by the yellow vector in Figure 3.8. The forces
between two points are non-zero only if their outward directions are facing each other.
Since we only have two soft bodies in our system, we further optimize by building the
hash table only for the sampled positions in one of the two soft bodies. Doing so also
eliminates the possibility of a self-collision.

Next, we define the repulsive force between two sampled points.

H = min(H1, H2) (3.50)

In the above equation, H1 and H2 are the size of the two tetrahedra ℑ1 and ℑ2 mea-
sured as the distance of the centroid from its vertices. The dashed edge in Figure 3.9
represents the size of a tetrahedron.

ffar =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 i f ||xp||2 ≤ H

0 i f d1 · d2 ≥ 0
K1 x
||xp||32

otherwise

(3.51)

In the above equation, xp is the vector between two sampled positions. Vectors d1
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H1

H2

ℑ1

ℑ2

FIGURE 3.9: Modeling repulsion under close proximity. H1 and H2 rep-
resents the distance of the centroid from corresponding vertex.

and d2 are the outward direction at the sampled positions. The force ffar is applied to
the tetrahedron vertex closest to the sampled position.

Finally, to minimize interpenetration, we use a strong repulsive force acting be-
tween the centroids of two tetrahedra. This force is in addition to the forces between
the sampled positions. The additional force is distributed equally among the vertices
of the tetrahedron, however, is non-zero only when the centroids of two tetrahedra are
closer than H.

fnear =

⎧⎨⎩0 i f ||xc||2 ≥ H
K2 xc
||xc||32

otherwise
(3.52)

In the above equation, xc is the vector between two centroids of the tetrahedron.
When two tetrahedrons are already interpenetrating, ffar pushes them further into
each other. Hence, when fnear is non-zero, ffar must be zero. We also make the stiffness
K2 very large so that the centroid of two tetrahedrons cannot cross each other easily
and get into an invalid configuration we cannot recover from.

3.10 Time Stepping

We use the Symplectic Euler integration scheme. Symplectic Euler allows for natural
integration of collision impulses in the integration step and is computationally inex-
pensive compared to Backwards Euler. Backwards Euler is more suitable for cases
where we require large time steps or extremely stiff systems. As we are aiming for
accuracy rather than large time steps, Symplectic Euler makes more sense.
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In the 2D case, for each particle, we first compute the internal forces and accumu-
late all other external forces like gravity and constraint forces required for pressing
and rubbing the soft bodies against each other. We compute the change in velocities
as

∆v = M−1(fint + fext) dt. (3.53)

We add the collision impulses and step again to obtain the positions as

∆x = (∆v + ∆vcollision) dt. (3.54)

In the 3D case, we compute the collision forces instead of collision impulses and
update the position and velocities of each particle as follows

∆v = M−1(fint + fext + fcollision) dt (3.55)

∆x = ∆v dt. (3.56)

3.11 Summary

We briefly described the theory behind elastic solids, their discretization, and imple-
mentation. We first derived the equation describing the internal forces inside an elastic
material in continuous space and then discretized the continuous space assuming lin-
ear tetrahedral elements. We also investigated the generation of rough tetrahedral
meshes for our simulation. We discussed the Rayleigh damping model and technique
for integrating damping into our framework using force differentials. We provided a
recipe for building a full stiffness matrix and computation of critical damping factor
α and β. We discussed collision detection and resolution in both 2D and 3D case and
how we merge them with our integration scheme. In the next chapter, we look at the
effects of varying various elastic parameters in our system on the coefficient of friction.
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Chapter 4

Results

We explore various factors affecting friction and discuss the results we obtain from
our simulator in 2D and 3D case. We discuss the parameter setup of our simulator
and various factors affecting the results. We simulate static friction in the 2D case
and both static and dynamic friction in the 3D case and collect data from real world
measurement for qualitative validation of results obtained.

4.1 Friction in 2D

FIGURE 4.1: An output frame from our 2D simulator.

In the 2D case, the number of samples per unit length for generating the height
field is 2 per unit length and the total number of triangles in the system is around
8000. The height field is generated using pink noise while the standard deviation of
the height field is 5 units. For reference, the length of the longer soft body in Figure
4.1 is 1500 units. We also use a hash table of size 2 × 2 unit for collision detection.
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4.1.1 Methodology

To simulate friction between two soft bodies, we make one of the soft body stationary
while we drag the other over it. In our case, we simply make the lower soft body
stationary by pinning the particles at the lowermost layer. We slowly increase the
horizontal force on the upper body until it starts sliding. We define the coefficient of
static friction as the ratio between horizontal and vertical force at the moment when
the upper body just starts to slide. The vertical force in our case is gravity. We run
each test twelve times using different surfaces drawn from the same distribution and
average the results to get the friction coefficient for one set of parameters. In 2D case,
we derive our surface samples from pink noise with fixed spectral energy. The time
required for each individual simulation depends on the stiffness of the material and is
between 8 hours to 24 hours on average using a single core with AVX instructions. We
run multiple instances of our simulator on a cluster.

4.1.2 Results

We test the effect of varying elastic parameters like Young’s modulus, Poisson ratio,
Rayleigh damping (stiffness/β damping) and mass density on static friction coeffi-
cient. The plots in Figure 4.2 and 4.3 has been obtained from data tabulated in Table
4.1.

FIGURE 4.2A: Variation in the coefficient of static friction with Young’s
modulus. The shaded tube indicates the standard deviation in mea-

surement at the point of observation.
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FIGURE 4.2B: Variation in the coefficient of static friction with Poisson
ratio with associated error bound.

FIGURE 4.2C: Variation in the coefficient of static friction with Rayleigh
damping with associated error bound.

From figure 4.2 and 4.3, we see that coefficient of static friction is most correlated
with Young’s modulus and mass density. Poisson ratio has the least effect on the fric-
tion coefficient followed by Rayleigh damping. Increasing Young’s modulus is equiv-
alent to making the system stiffer and it is difficult for the interlocking triangles on the
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FIGURE 4.2D: Variation in the coefficient of static friction with mass
density with associated error bound.

surface to deform and slide over each other. This results in an increased coefficient of
friction. Counterintuitively, however, increasing mass density reduces the coefficient
of friction. The reason we think is that increasing mass density causes increased nor-
mal forces which deform or smooth out the rough contact. This causes the coefficient
of friction to reduce as relatively lower tangential forces are needed to slide the object
due to the smoothing effect.

We also observe that the static coefficient of friction increases marginally with the
Rayleigh damping parameter β. In the ideal case, the coefficient of static friction
should be independent of Rayleigh damping because the bodies are stationary and
have no velocity. However, in practice, just before the soft body starts to move, the
vertices gain small velocity causing some additional resistance in the motion of the
particles due to damping. The coefficient of static friction is weakly influenced by a
change in Poisson ratio. Increasing Poisson ratio increases the resistance to change in
volume. In most cases, a change in volume is negligible and so is the resistant force
due to volume change. Hence, we only see a small increase in the coefficient of static
friction due to increase in Poisson ratio.

In Figure 4.2, we show the error margin in our estimate of friction coefficient. The
uncertainty is primarily because of the small number of sample surfaces we draw from
our noise distribution. The results were obtained using 12 samples for each data point
and increasing the number of samples should result in a lower variance. The second
issue is that increasing Young’s modulus, Poisson ratio causes the system to become
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Young’s Poisson’s Rayleigh Mass
µmean µstd

modulus (E) ratio (ν) damping (β) density (ρ)
50 000 0.25 0.2 0.5 0.700 0.076

100 000 0.25 0.2 0.5 0.767 0.062
250 000 0.25 0.2 0.5 0.893 0.093
500 000 0.25 0.2 0.5 0.935 0.110

1000 000 0.25 0.2 0.5 1.005 0.134
100 000 0.48 0.1 0.25 0.892 0.150
100 000 0.25 0.1 0.25 0.875 0.155
100 000 0.1 0.1 0.25 0.864 0.163
100 000 0.05 0.1 0.25 0.858 0.159
100 000 0.48 0.1 0.5 0.790 0.106
100 000 0.25 0.1 0.5 0.751 0.089
100 000 0.1 0.1 0.5 0.722 0.080
100 000 0.05 0.1 0.5 0.701 0.073
100 000 0.48 0.1 1.0 0.690 0.061
100 000 0.25 0.1 1.0 0.668 0.053
100 000 0.1 0.1 1.0 0.661 0.071
100 000 0.05 0.1 1.0 0.654 0.051
100 000 0.25 0.3 0.25 0.933 0.144
100 000 0.25 0.2 0.25 0.914 0.168
100 000 0.25 0.1 0.25 0.875 0.155
100 000 0.25 0.05 0.25 0.842 0.185
100 000 0.25 0.3 0.5 0.776 0.080
100 000 0.25 0.2 0.5 0.767 0.062
100 000 0.25 0.1 0.5 0.751 0.071
100 000 0.25 0.05 0.5 0.743 0.087
100 000 0.25 0.3 1.0 0.717 0.090
100 000 0.25 0.2 1.0 0.699 0.044
100 000 0.25 0.1 1.0 0.668 0.052
100 000 0.25 0.05 1.0 0.643 0.066
100 000 0.48 0.1 0.125 0.983 0.189
100 000 0.48 0.1 0.25 0.892 0.150
100 000 0.48 0.1 0.5 0.790 0.106
100 000 0.48 0.1 1.0 0.690 0.061
100 000 0.25 0.1 0.125 0.969 0.176
100 000 0.25 0.1 0.25 0.875 0.155
100 000 0.25 0.1 0.5 0.751 0.089
100 000 0.25 0.1 1.0 0.668 0.053
100 000 0.1 0.1 0.125 0.958 0.169
100 000 0.1 0.1 0.25 0.864 0.163
100 000 0.1 0.1 0.5 0.722 0.080
100 000 0.1 0.1 1.0 0.661 0.071

TABLE 4.1: Table of static friction coefficient (µmean) and the reliability
of measurement (µstd) in the 2D case for varying soft body parameters.
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FIGURE 4.3: Variation in the coefficient of static friction with elastic
parameters.

stiffer and higher number of time steps are required to attain stability. Lower mass
density also has a destabilizing effect. The stiffness of an ODE is measured by the
ratio of maximum and minimum eigenvalue of the mass-weighted stiffness matrix i.e.
M−1K. The mass of a particle depends on the size of triangle and density. So, using
smaller triangles or smaller density should also make the system stiffer. We think,
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increasing the time steps further should lower the instabilities in the system and result
in lower error margin.

4.2 Friction in 3D

We investigate dynamic and static friction in the 3D case. The setup for both static
and dynamic friction is similar but differs in the way we measure the two coefficients.
We try to simulate metal like material with Young Modulus around 100 GPa, mass
density of 3000 kg/m3, Poisson ratio of 0.25. We use uniform noise to generate our
surfaces and sample the surface with a pitch of 0.5 cm. So the areal density of sample
points on the surface is 4 samples/cm2. The Rayleigh damping parameters are set to
critically damp the largest modes in the system. The larger of the two soft bodies has
a radius of 31 cm while the smaller has a radius of 18 cm. The standard deviation
of the noise height field is 0.28 cm. The total number of tetrahedrons in the system is
around 60 thousand. The total number of tetrahedron - tetrahedron contact pair hovers
around 40 thousand with a hash table of size of 1 cm × 1 cm × 10 cm. The z − height
of the hash table doesn’t influence the performance since we limit the collisions to the
tetrahedrons on the interacting surface. It takes around 10 to 15 seconds of wall time
on a 4 core machine to simulate a time step of 4 µs.

FIGURE 4.4: An output frame from our 3D simulator.

For testing friction in 3D case, we use a simple controller which can maintain a
constant normal force while dragging the object horizontally. While it is possible to
simply drop the object with gravity to simulate desired normal force, the main draw-
back of this approach is that the object tends to bounce off the surface and takes a while
to settle down. The controller uses the component of contact force along the normal
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direction as feedback and outputs necessary correction forces that keep the feedback
forces within 5 percent margin of the setpoint. The output forces of the controller are
applied to the vertices on the top layer of the top object. Vertices on the bottom layer of
the bottom object are permanently pinned. Figure 4.4, shows the constrained vertices
on top and bottom objects in orange. It should be noted that only one layer of vertices
are pinned and the orange shade is due to the interpolation of colors by rasterization
system.

4.2.1 Methodology - Dynamic Friction

With dynamic friction, there is a net relative motion between the two soft bodies and
we expect some continuous resistive force opposing the relative motion. We apply
a normal force of 15 Newton on the smaller of the two soft bodies and drag it over
the larger body with a velocity 0.2 meters per second. We collect the horizontal and
normal feedback forces from the controller while the object is being dragged. The
feedback forces indicate the force necessary to sustain a constant horizontal velocity
and also indicate the coefficient of friction.

Results

FIGURE 4.5: The plot of tangential forces over time. The normal force
is held constant at 15 Newton with a relative velocity of 0.2 m/s.

We see in figure 4.5, the horizontal forces are negligible compared to the normal
force. With dynamic friction, we expect to see a net positive area under the red curve
and zero for the green curve. While the area under the red curve is 1.17 × 10−4, the
area under the green curve is 8.88 × 10−7. We can define the average coefficient of
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friction as follows

µkinetic =

∫ t
0 fT dt∫ t
0 fN dt

. (4.1)

In the above equation, fT is the force along the direction of motion while fN is the
normal force. We obtain µkinetic = 0.0016.

Clearly, the dynamic/kinetic coefficient of friction is way too small. In our simula-
tor, the only energy dissipation is due to Rayleigh damping which we think is insuffi-
cient to capture the energy loses due to dynamic friction. As discussed in our tribology
literature review, in most cases it is essential to introduce additional energy dissipat-
ing elements at a local junction of contact. The purpose of the local energy dissipating
element is to model the molecular forces of attraction at the point of contact. One such
model has been described in Karpenko et al. [20].

4.2.2 Methodology - Static Friction

In the static friction case, there is no relative between the two soft bodies. The two
bodies should remain in static equilibrium until the horizontal force unlatches the en-
tangled tetrahedrons and the body starts to move. In our simulator, we slowly increase
the horizontal force while maintaining an almost constant normal force. We expect the
object to remain stationary until a threshold for horizontal force is reached after which
it should start sliding. While processing the collected data, we select the maximum
horizontal force and the corresponding normal force to determine the static coefficient
of friction. We also ensure that the average velocity of the sliding object is nearly zero
(≤ 0.01 m/s) around the instant maximum horizontal force is attained.

Results

As seen from Figure 4.6, the tangential feedback force is maximum around 0.2 ms after
which the body is no longer in static equilibrium and accelerates with increasing force.
We ran our simulator twice, with different initial starting positions and the results are
tabulated as below.

µ
Test 1 0.081
Test 2 0.096

TABLE 4.2: The coefficient of static friction obtained by our simulator
for metal like material.

In both tests, we see that our simulator produced a static coefficient of friction
which is quite low for metallic surfaces. However, the results show some qualitative
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FIGURE 4.6: The plot of tangential feedback forces over time. The nor-
mal force is held constant at 15 Newton while tangential force is in-

creased over time.

agreement with the theory of static friction as we would expect the friction force to
increase up to a point and then decrease.

4.3 Real World Measurements

We collected (Table 4.3) static coefficient of friction and various elastic parameters from
multiple sources [34, 42] available on the internet.

Our aim is to find any relationship between the coefficient of static friction and
elastic parameters and compare them with the data obtained from our simulator. Our
original goal was to generate enough data from our simulator and use a function ap-
proximator to summarize the result and predict the friction coefficient for material
pairs which are not in our dataset. As we do not have enough data from our simula-
tor, we rely on real measurements for the purpose of prediction.

4.3.1 Methodology

We collected the coefficient of static friction for various material pairs such as metals,
plastic, wood, and glass under clean and dry condition. We also obtain the elastic
properties namely Young’s modulus, Poisson ratio and mass density for all materials
in our list. We know that surface roughness plays an important role in determining
friction force but no additional information on surface roughness was available at the
source. Hence, we assume that the surface roughness of the material pairs in contact is
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Material 1 Material 2
µstaticName E ν ρ Name E ν ρ

Steel 200 0.25 8000 Steel 200 0.25 8000 0.78
Copper 133 0.35 8940 Copper 133 0.35 8940 1.21

Aluminum 69 0.33 2700 Aluminum 69 0.33 2700 1.1
Aluminum 69 0.33 2700 Steel 200 0.25 8000 0.61

Brass 115 0.34 8730 Cast Iron 170 0.26 7200 0.4
Cadmium 64 0.31 8650 Cadmium 64 0.31 8650 0.5
Cadmium 64 0.31 8650 Steel 200 0.25 8000 0.6
Cast Iron 170 0.26 7200 Cast Iron 170 0.26 7200 1.1

Chromium 248 0.31 7190 Chromium 248 0.31 7190 0.41
Copper 133 0.35 8940 Cast Iron 170 0.26 7200 1.05
Copper 133 0.35 8940 Copper 133 0.35 8940 1.0
Copper 133 0.35 8940 Steel 200 0.25 8000 0.53
Glass 60 0.25 2400 Glass 60 0.25 2400 0.95
Glass 60 0.25 2400 Steel 200 0.25 8000 0.6
Glass 60 0.25 2400 Nickel 170 0.31 8900 0.78

Graphite 20 0.2 2050 Graphite 20 0.2 2050 0.1
Graphite 20 0.2 2050 Steel 200 0.25 8000 0.1

Nickel 170 0.31 8900 Nickel 170 0.31 8900 0.8
Nickel 170 0.31 8900 Steel 200 0.25 8000 0.7
Nylon 4 0.39 1130 Nylon 4 0.39 1130 0.2

Plexiglass 3.3 0.37 1190 Plexiglass 3.3 0.37 1190 0.8
Plexiglass 3.3 0.37 1190 Steel 200 0.25 8000 0.45

Polystyrene 2.5 0.4 1040 Polystyrene 2.5 0.4 1040 0.5
Polystyrene 2.5 0.4 1040 Steel 200 0.25 8000 0.3

Rubber 0.01 0.47 2300 Asphalt 3 0.35 2500 0.6
Rubber 0.01 0.47 2300 Concrete 17 0.17 2400 0.9
Brass 115 0.34 8730 Steel 200 0.25 8000 0.35
Steel 200 0.25 8000 Cast Iron 170 0.26 7200 0.4

Teflon 0.5 0.47 2200 Steel 200 0.25 8000 0.04
Teflon 0.5 0.47 2200 Teflon 0.5 0.47 2200 0.04
Wood 10 0.35 750 Wood 10 0.35 750 0.3
Wood 10 0.35 750 Copper 133 0.35 8940 0.4
Wood 10 0.35 750 Steel 200 0.25 8000 0.45
Wood 10 0.35 750 Concrete 17 0.17 2400 0.62
Zinc 82.7 0.25 7120 Zinc 82.7 0.25 7120 0.6
Zinc 82.7 0.25 7120 Cast Iron 170 0.26 7200 0.85

E : Young’s modulus (in GPa)
ν : Poisson ratio

ρ : Mass density (in kg/m3)

TABLE 4.3: Table of static friction coefficient (µstatic) obtained from real
world measurements. The data in the table is compiled from various

sources available online.
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similar for all observations. We then train an ϵ − SVR [40, 32] regressor using the ma-
terial properties of the contact pair as our feature vector and coefficient of static friction
as the target. The reason we choose SVR is that SVR can approximate non-linear func-
tions and offers greater control for avoiding overfitting. The term overfitting refers to
the issue in function approximation literature where the function fails to capture the
general trend in the data and behave more like a hash table. The epsilon paramater
indicates the maximum permissible error for each data point in the training set. So, a
lower value of epsilon is pushes the regressor to fit the training data as closely as possi-
ble. The constant C ≥ 0, determines the trade-off between the flatness of the regession
boundary and the amount up to which deviations larger than epsilon are tolerated.
So, a higher value of C indicates lower tolerance and higher chances of overfitting the
data. Since we only have few tens of samples to train on, overfitting is a major con-
cern. We set the SVR hyperparameters ϵ = 0.1 and C = 0.5. The hyperparameters are
chosen such that it minimizes the training error while maintaining optimal function
complexity. Increasing C or decreasing ϵ have the similar effect of reducing training
error and increasing function complexity. To get an idea of the function complexity,
we plot the coefficient of friction with respect to elastic parameters and settle on hy-
perparameters that output friction coefficient within a plausible range with minimal
variance.

FIGURE 4.7A: Variation in the coefficient of static friction with Young’s
modulus (E) of the two materials in contact.
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FIGURE 4.7B: Variation in the coefficient of static friction with Poisson
ratio (ν) of the two materials in contact.

FIGURE 4.7C: Variation in the coefficient of static friction with mass
density (ρ) of the two materials in contact.
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4.3.2 Results

After fitting the regressor, we plot the coefficient of static friction with respect to
Young’s modulus, Poisson ratio and mass density as shown in Figure 4.7. Compar-
ing Figure 4.7 with Figure 4.3, we see there is a qualitative agreement between the
results of our simulator and measurements from real world in the 2D case. Based
upon our simulated data, we predicted the coefficient of static friction to increase with
Young’s modulus and Poisson ratio while decrease with mass density in agreement
with the real measurements. The predictions for Poisson ratio from our 2D simulator
only showed a weak correlation with static friction while real data suggests otherwise.
We think real world materials are much stiffer and for stiff materials, variation in Pois-
son ratio has more impact on the coefficient of static friction.

4.4 Conclusion

We notice that while we obtained interesting results in the 2D case, the same was not
possible in 3D. In 3D, we have a vastly greater number of tetrahedra and contacts.
Accurate collision detection and resolution for arbitrary geometry in 3D is challeng-
ing in terms of both complexity and computation time. We theorize, since our con-
tacts are not interpenetration free in 3D, the contacts are unable to support extreme
force required for deforming stiff materials and produce necessary resistance to stay
in equilibrium in the static case. For dynamic case, the coefficient of friction is almost
negligible, and we think the reason is that we do not have any energy dissipating ele-
ments modeling molecular adhesion. Another issue we have in 3D is the time required
for simulating tens of milliseconds may run into days. Our simulator also requires ac-
curate tuning of parameters which control the repulsive collision forces and requires
some trial and error to get the correct parameters. Combined with the slowness of our
simulator, this can be a huge bottleneck in simulating different surface geometries. On
the positive side, we obtained qualitative validation of static friction in 3D case. In 2D
case, we showed the variation of the static coefficient with various elastic parameters
and results obtained matched qualitatively with data obtained from real-world mea-
surements. In the next chapter, we discuss further improvement based on our current
experience as future work.
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Conclusion

In this thesis, we first looked into various techniques used for modeling friction in
tribology and graphics literature and their scope in terms of application, robustness,
and accuracy. We designed a simulator for capturing the phenomenon of static and
dynamic friction and discussed the issues associated with its design. We showed a
correlation between the coefficient of static friction and the elastic parameters Young’s
modulus, Poisson ratio and Rayleigh damping in 2D case. We also accomplished a
qualitative verification of the results obtained in the 2D case with real-world mea-
surements. In 3D, we attempted to simulating both static and dynamic friction. We
achieved a qualitative validation of the result in the static case. In the dynamic case,
our simulator failed to produce any meaningful results due to inaccuracies in the con-
tact model. We discussed various key areas where our simulator is lacking and how
they could affect the results obtained. We propose various improvements for our sim-
ulator based on our experience as future work in the next section.

5.1 Future Work

It is an engineering challenge to simulate thousands of contacts accurately. While an
accurate contact model is very important for simulating friction, steep computation
cost remains a major hindrance in implementing such a model. Even with simple con-
tact model, the simulation times are in the order of days for tens of milliseconds of
simulation. Such timescales are clearly not useful in terms of practical purposes when
our aim is to generate a lot of data. Since this simulator was not designed with scala-
bility in mind, our simulator shows diminishing gains after four CPU cores. We think
a better approach is to resolve the contacts accurately without interpretations while
distributing the collision computations over multiple CPU cores. Apart from robust
and interpretation free contact, it might be important to implement a nominal friction
model locally at every contact for simulating molecular adhesion, plastic deformation
and wear in the quasi-static dynamic case [29]. We also realized that real materials are
extremely stiff and require very small time steps (10−7s) with non-implicit integration
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schemes. We already know the main computational bottleneck is not in simulating
a large number of tetrahedra but in resolving collisions. With larger steps and more
accurate collisions, there may be a reduction in compute time due to a reduction in the
net time spent on collisions for equivalent simulation time. Since the cost of comput-
ing fint is minimal, it may be worthwhile to see the trade-off between increasing the
resolution of the tetrahedral mesh while using larger time steps using implicit schemes
with Newton iterations.
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