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Fig. 1. Our technique demonstrated on a modified Bistro Exterior scene containing 192 × 64 × 192 probes.
The third row shows the changes inside the tunnel as the gate opens over time. Our techniques responds faster

to a dynamic stimuli and offers 1.7-times higher performance compared to the Q-DDGI implementation even

with large probe grid containing excess of 2.3 million probes. Q-DDGI, detailed in section 5, is an extension of

vanilla DDGI making it more competitive and comparable against our approach.

We present an adaptive extension of probe based global illumination solution that enhances the response

to dynamic changes in the scene while while also enabling an order of magnitude increase in probe count.

Our adaptive sampling strategy carefully places samples in regions where we detect time varying changes in

radiosity either due to a change in lighting, geometry or both. Even with large number of probes, our technique

robustly updates the irradiance and visibility cache to reflect the most up to date changes without stalling

the overall algorithm. Our bandwidth aware approach is largely an improvement over the original Dynamic
Diffuse Global Illumination while also remaining orthogonal to the recent advancements in the technique.
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CCS Concepts: • Computing methodologies→ Ray tracing; Rasterization.

Additional Key Words and Phrases: Adaptive sampling, irradiance probes, global illumination, real-time

1 INTRODUCTION
Global illumination (GI) strikingly improves the realism of a virtual scene, but its high computational

cost has been a long-standing challenge in its application to real-time rendering [22].
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Several real-time GI solutions have been proposed, such as screen space [43] techniques, which

support fully dynamic scenes but suffer from quality issues due to the limited availability of

information in screen space. On the other hand, baked texture light-maps only support static

geometry but remain popular due to their simplicity, low run-time cost, and quality. Precomputed

Radiance Transfer [51] combinedwith light probes [31] and light-maps [15] solved some of the issues

plaguing static light maps; in particular, these approaches support semi-dynamic geometry and self-

occlusion while adhering to a strict compute budget. The advent of real-time ray-tracing hardware

set the stage for modern fully dynamic GI. Dynamic real-time GI methods build upon the decades

of research in sampling, and amortization of shading and visibility across space (pixel/world), angle,

and time to improve convergence [40]. Adaptations of several offline techniques such as photon

mapping [17], many-light rendering [20, 62], and radiosity maps [54] have also been explored

in the context of modern [26, 27] ray-tracing capable hardware. However, presence of noise in

sampled algorithms require the use of strong denoisers. Machine learning denoisers [6, 66] have

demonstrable advantages in terms of quality compared to more traditional frequency [32] or

variance [46] based denoisers. However, the prospect of training a neural network, the added

complexity of integrating machine learning inference with traditional graphics pipeline, and the

proprietary nature of machine learning frameworks have stalled the industry-wide adoption of

these techniques. The recent probe-based algorithm, Dynamic Diffuse Global Illumination (DDGI)

[28], extending the classic irradiance probes, still remains an excellent choice due to its relative

simplicity, quality, and cloud streaming capabilities [14, 53]. However, scaling of DDGI in its original

formulation is limited, and approaches such as multi-grid hierarchy and probe rolling [29] are

necessary to scale it across large environments. Our adaptive approach focuses on dynamic contents

in environments containing millions of probes in a single hierarchy.

We propose Adaptive Dynamic GI (ADGI) algorithm where we trace a few pilot rays per frame to

scan the environment and build a coarse representative model of the dynamic events. Using Markov-

Chain sampling, we dynamically allocate resources to the critical areas, improving convergence in

those regions. While DDGI allocates a fixed number of samples per probe and uniformly distributes

samples across directions, ADGI non-uniformly samples the joint spatio-angular domain of the

discretized 5D light-field represented by the probes. Our approach essentially decouples resource

allocation from the number of probes resulting in a user-controlled performance target (FPS)

and improved scaling even with millions of probes. Additionally, our approach results in faster

convergence in static and dynamic environments given equal render time. Our approach is drop-in

compatible with the original implementation and its several other extensions such as probe rolling

and probe volume hierarchies [29].

We achieve these objectives by formulating a guided function approximation technique, which is

purposefully accurate in specific regions highlighted by our guiding function and thus eliminates

the need for uniform resource allocation. Furthermore, we develop a sampling methodology based

on temporal Markov-chain, which adapts naturally to a dynamic environment while also enabling

scaling across large number of probes. Finally, we discuss memory and bandwidth preserving color

compression schemes tailored specifically for our purpose.

2 RELATEDWORK
Probe-base approaches:Modern games rely extensively on light probes for static and dynamic

global illumination due to their ease of integration into the game engine pipeline at low run-time

cost. Some advocate a uniform grid probe placement due to their simplicity while others have

proposed non-unform probes due to their efficiency. Probe based techniques are usually prone to

light leakage. As such, uniform grid approaches [28, 31] use additional information, stored in the

probes to determine whether a probe is visible from a shade point. Non-uniform approaches may
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Fig. 2. Figure showing the steps in our adaptive-sampling strategy. We define a guiding function ℎ(𝑥) that
highlights (in yellow) the interesting regions of the domain. The samples 𝑥𝑖 obtained from ℎ(𝑥) are used to

evaluate the objective 𝑔(𝑥𝑖 ). Our goal is to obtain an approximate representation of 𝑔(𝑥), denoted as 𝑔(𝑥),
from the (𝑥𝑖 , 𝑔(𝑥𝑖 )) pairs. As more samples are obtained from the highlighted region, the reconstruction error

is lower in the yellow area, as shown in sub-figure (d).

use carefully curated probe placement [63] combined with spatial data-structures like octrees to

determine the visibility of a probe from a surfel. McGuire et al. [28, 31] stores the depth values

of the surrounding geometry from a probe and use a similar idea as Variance-Shadow-Mapping

[9] to approximate visibility. However, non-uniform approaches has been mostly limited to static

geometry due to their high initial construction cost. Some approaches use rasterization [31, 63]

while other may use ray-tracing [28] to compute the probe content. Probe based techniques also

differ on how they store the information in the probes. Some use discrete textures [28, 31] while

other may use a compressed basis representation such as Spherical Harmonics [14, 55]. Spherical

harmonics implicitly pre-filters the content before storage but may cause light and dark ringing

issues. Memory bandwidth required for reading and writing from the probes is also a major concern.

Texture compression [31, 53] is usually the preferred choice to minimize memory bandwidth.

Bandwidth is also crucial for cloud streaming of probe data. In such scenarios, Spherical Harmonics

[14] representation may be preferable as they provide excellent compression for low frequency

data. At run-time, dynamic probe based [28] GI solutions uniformly distributes rays across probes

to update their content; this quickly becomes a bottleneck as the number of probes increases. Our

approach on the other hand, focuses on the optimal distribution of resources to maximize visual

fidelity. Various extensions have also been proposed to increase scalablity [29] of uniform grid

approaches such as multiple-volume hierarchies and probe rolling. Our approach remains largely

orthogonal and fully compatible with these extensions.

Adaptive sampling: Adaptive sampling has been used in the context of screen-space ray-traced

global illumination where more samples are accumulated in regions with high noise and high

frequency [12]. Adaptive sampling is also useful for filtering soft shadows [32], where pilot-rays

model the spatial frequency of shadow-penumbra and provide the number of additional samples

required at each pixel to improved convergence. Neural versions [13] of adaptive sampling has

also been proposed where a neural network generates a sampling-map that is tightly coupled to a

post-process neural-denoiser. Conceptually our approach is similar, but our execution is tailored

for the problem of temporally coherent sampling of probes. We refer readers to section 8 for an

extend related work in irradiance-caching, screen-space GI and MCMC techniques
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3 OVERVIEW
We focus on two primary issues with DDGI in its original formulation. First, the technique does

not allow for the non-uniform allocation of resources, resulting in unnecessary probe updates in

regions that are not crucial for visual fidelity. Seconds, it does not update the probes quick enough

to reflect transient changes in the scene environment. Our adaptive strategy involves detecting

the changes in the environment and allocating resources driven by the detected changes. While

the detection phase requires allocating additional resources, our empirical evaluations suggest our

non-uniform adaptive sampling compensates for the lost efficiency in the detection phase. Our

detection phase also enables fast probe updates for capturing transient changes in the scene. We

model our technique as guided function approximationwhere we approximate a continuous function

(e.g. 5D light-field) using a discrete (e.g. probes) representation driven by a guiding function.
A naive approach to approximate a continuous function is to discretize the domain and reserve a

representative sample for each discretization. The strategy is useful when the domain is relatively

small; however, as the domain gets larger or the number of discretizations increases, it is prohibi-

tively expensive to update all discretizations in real-time. This is one of the issues plaguing the

original DDGI technique. In many applications, it is not necessary to update the entire domain

uniformly; instead, we can tolerate more approximation errors in some regions than others. A

simple example is foveated rendering, where errors in the periphery are less intrusive than those

near the gaze center. In our case, we need the most accuracy in probes contributing to final shading.

We introduce the notion of guiding function, which highlights the regions where a higher

reconstruction accuracy is desired. We define the guide using a product of terms - the first term

represents the current state of the environment while the second term is a feedback from the

sampled cache. We sample the guide using a temporally coherent Markov-chain and use the

samples to update our approximate representation using a parallel thread-safe approach. Thus our

approach is summarized in three steps - defining a guiding function, sampling the guide, and using

the samples to update the approximate representation. We describe these steps in sections 3.2, 3.3

and 3.4 while we discuss various implementation specific details in section 4. See figure 2.

Our approach provides two distinct advantages compared to the original DDGI - approximation

quality and scalability. At any time, we concentrate our resources on a potentially challenging

area as opposed to the entire domain. Provided our guide correctly identifies the challenging

regions, the quality is improved due to a higher concentration of resources in the appropriate

region. Since we sample the guide independent of the number of discretizations, the decoupling

allows for a high number of statically allocated probes without affecting run-time performance.

Increased discretizations improve approximation quality while the independence of sampling from

the number of discretizations improves scalability. More specifically, we transparently increase

the number of discrete probes without affecting performance. The run-time performance depends

on the number of samples we generate; the samples are channeled to the appropriate areas by the

guiding function. Our Markov-chain sampling is highly parallel, temporally coherent, and scalable,

making it suitable for real-time temporally distributed reconstruction of large probe grids.

3.1 Background
Here we briefly describe the original DDGI algorithm. DDGI consists of a 3D grid of directionally

resolved irradiance probes that are updated in real-time through hardware ray-tracing. The probes

also contains visibility information to prevent light leakage. The probe representation has many

benefits, it performs optimally for diffuse indirect transport and is relatively inexpensive to encode

and decode information to and from the probes. The algorithm evenly distributes ray-samples

outwards from the probe center at each active probe in a stochastic rotated spiral pattern. DDGI is
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Fig. 3. The figure illustrates the main steps of DDGI algorithm. Algorithm defines a uniform grid of probes

and trace uniform-random rays in all direction from each probe. Based on the hit information, we compute

the visibility (vis) and irradiance (irr) and update the 2𝐷 atlas. We also update the probe states based on

visibility information (back-face hit ratio). Finally, for each shade-point, we query the eight bounding probes

surrounding it and interpolate them to compute incoming indirect illumination.

a two step algorithm. First, it updates the shading on the probe texels. Next a screen-space pass

where the up-to-date probe content is used for shading the camera-pixels. The probe texel values

are encoded into a spherical-mapped diffuse irradiance-texture with 8 × 8 resolution. Probes also
captures the average ray-hit distance, and squared distances to the nearest geometry at 16 × 16
resolution. DDGI temporally filters the probe texels by blending in the new values using a fixed

hysteresis. The visibility data is used to decide whether a probe is visible at a shade-point and also

used to infer whether a probe is inside a geometry and deactivated. The probe’s state is not limited

to on or off and can vary with scenarios [29]. The world-position of the screen-space pixel is used

as a key to the probe-texture lookup. The lookup interpolates the corresponding eight probes of

the grid voxel containing the shade-point. The algorithm is illustrated in figure 3. DDGI algorithm

is suitable for diffuse and slow changing phenomena in time. Therefore DDGI, combined with our

adaptive-sampling strategy is a reasonable real-time GI approximation for dynamic scenes.

3.2 Guiding function
As summarised in section 3 and figure 2, a guiding function highlights the important areas in

the domain, i.e., challenging regions where more resources are required. These highlighted areas

receive more adaptive samples, reducing the approximation error in those regions. Mathematically,

the domain of the guiding function ℎ : 𝑅𝑑 → 𝑅 is the continuous 5D light field. Upon query, the

guide function returns a scalar value indicating the importance of a sampled point. In our case,

𝑑 = 5 as the domain is a 5-dimensional space of world-space positions and directions, and the guide

encodes the importance of sampling a direction on a probe (texel’s importance).

We model the guiding function (ℎ) as a product of two terms. The first term, we call 𝑓 : 𝑅𝑑 → 𝑅,

represents the value in sampling a texel based on our understanding (limited) of whether such a

texel would contribute towards the final screen-space shading. The second term is the observed

sampled evidence (a.k.a irradiance cache) as they become available. Initially, the irradiance cache is

empty but filled progressively through sampling. We define the first term based on some heuristics

that describes our understanding of the probe-environment:

• Probes closer to the camera,

• Probes closer to geometric surfaces,

• Directions on the probes facing away from geometric surfaces,

• Directions on the probe with higher incoming irradiance,

• Directions with temporal change in irradiance and visibility

We trace pilot rays from the probes to generate the information necessary to quantify the above

heuristics. We also call it the detection phase where we pre-scan the scene environment for changes.

We denote the individual heuristics as 𝑓𝑖 : 𝑅
𝑑 → 𝑅, and compose them into its final form 𝑓 as shown

in equation 1, where 𝜙 represents a composition function. The composition function is simply a

5
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Algorithm 1:Metropolis algorithm

Input: ℎ: Guide distribution,𝑀 : No. of iterations

Input: 𝐾 : No. of initial samples to reject

Output: 𝑥 : Sample

Ensure:𝑀 ≥ 2, and 𝐾 < 𝑀

1 𝑗 ← ShaderInvocationIndex()

2 𝑥0 ← 𝑆 [ 𝑗] // Initialize Markov-chain from memory

3 while 𝑖 ← 0 to𝑀 − 1 do
4 𝑥𝑖+1 ← RandomWalk (𝑥𝑖 , ℎ(𝑥𝑖 )) // Random walk step, algorithm 5

5 if 𝑖 > 𝐾 then
/* Use sample 𝑥𝑖+1 for probe updates, see algorithm 2 */

6 𝑆 [ 𝑗] ← 𝑥𝑖 + 1 // Save Markov-chain state

recipe to appropriately combine the individual heuristics. We quantify the individual heuristics (𝑓𝑖 )

in section 4.1 and the composition (𝜙) in section 4.2.

𝑓 = 𝜙 (𝑓0, 𝑓1, ..., 𝑓𝑖 ). (1)

The second term uses the stored irradiance in the probes, denoted by 𝑔, to modulate the first

term. We model the second term as - 𝑒𝑥𝑝 (𝛼 · 𝑔(𝑥)/𝑓 (𝑥)), where the scalar 𝛼 ∈ [0,∞) indicates our
confidence in the irradiance probe content; a higher value indicating greater confidence. Note that a

stored texel with high irradiance value may or may not have a high contribution to the final shading.

Example - in a dynamic environment the probe content from the last frame is quickly outdated

and thus less useful. The parameter 𝛼 models this uncertainty. The term 𝑓 (𝑥) in the denominator

ensures that we only trust 𝑔(𝑥) when 𝑓 (𝑥) is low. Finally, we define the guiding function as:

ℎ(𝑥) = 𝑒𝑥𝑝
(
𝛼 · 𝑔(𝑥)

𝑓 (𝑥)

)
· 𝑓 (𝑥). (2)

3.3 Sampling the guide
Next we sample the guiding function (equation 2). Mathematically, given an unnormalized distribu-

tion ℎ : 𝑅𝑑 → 𝑅, our goal is to obtain samples 𝑥𝑖 from ℎ(𝑥), where 𝑥𝑖 ∈ 𝑅𝑑 .
Our sampling algorithm is straightforward. We use the Metropolis sampling, as shown in al-

gorithm 1 to sample ℎ. The algorithm randomly initializes a state (𝑥0 ∈ 𝑅𝑑 ) and moves the state

forward based on the acceptance of a newly proposed state. We generate the proposed states by

perturbing the current state with a zero-mean Gaussian noise, also known as Random-walk [5].

Parallelism: Note that algorithm 1 runs as a shader invocation, meaning several instances of

the chain run in parallel. Each instance is independent with its own memory to load and store the

chain state (denoted by S[] in algorithm 1). The instances generate thousands of samples per frame.

As an input to our algorithm, we explicitly specify the number of chains that run in parallel, thus

controlling the number of adaptive samples and performance. Contrasting with the original DDGI,

the number of samples in the original implementation is proportional to the number of probes

which increases cubically with scene dimensions. As such, it is difficult to scale up when the scene

gets larger or when using a denser probe grid. Our approach is independent of the discretization

resolution and scales better to higher probe counts without compromising approximation quality.

Mixing-time: Initially, a Markov chain requires many iterations for the chain to generate

samples from the target distribution (here ℎ(𝑥)), a phenomenon known as mixing time. We avoid
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Table 1. List of symbols

Symbol Description Remarks

𝑓 Heuristics model Section 3.2

ℎ Guiding function/Target distribution Section 3.2, 3.3

𝑔 Objective function

Symbolic proxy for 𝑔𝑟 , 𝑔𝑐 .

Section 3.4

𝑔 Approximation of objective function

Symbolic proxy for 𝑔𝑟 , 𝑔𝑐 .

Section 3.4

𝑔𝑟 5D Light field Section 3.4

𝑔𝑐 Chebychev visibility Section3.4

𝑔𝑟
Approximation of 5D light field

(Irradiance cache)

Section 3.4, 4.5

𝑔𝑐
Approximation of Chebychev visibility

(Visibility cache)

Section 3.4, 4.6

𝑥 or 𝑥𝑖 Markov-chain samples

Symbolic proxy for 𝑝𝑖 , 𝜔𝑖 .

Section 3.3

𝑝𝑖 Positional (∈ 𝑅3) component of 𝑥𝑖 –

𝜔𝑖 Directional (∈ 𝑅2) component of 𝑥𝑖 –

this problem by bootstrapping the initial chain state from the last frame. As such, we keep the

number of iterations per frame small, but over frames, the chain effectively accrues many iterations.

Distribution stationarity: Markov chain sampling requires the target distribution ℎ(𝑥) remain

stationary. Due to a dynamic scene environment, the stationarity condition is seemingly violated.

This may affect the approximation quality of our technique if the distribution changes rapidly

between frames. However, we have several contingencies to deal with the issue. First, we target high

frame-rates, which minimizes the change in the target distribution between consecutive frames.

As an additional margin of safety, we reject initial 𝐾 samples per frame as shown in algorithm 1,

line 5. This ensures our usable samples are obtained closer to the target distribution. Note that

the evaluation time for ℎ(𝑥) negligible and thus rejecting few initial samples per frame does not

significantly impact performance. We also smooth out the target distribution (see section 4.1.4)

using spatio-temporal convolution to minimize abrupt changes in the target across frames.

Temporal tracking: Since our target distribution may vary with time, we require the samples

generated from the Markov-chain to closely follow the distribution to capture the transient changes

in the environment. We make some crucial modifications to our sampling algorithm to allow for

fast tracking of the target distribution, which we discuss in detail in section 4.9.

3.4 Approximation
With samples obtained from the highlighted (figure 2(b)) parts of the domain, we focus on using

the samples to evaluate (figure 2(c)) and reconstruct (figure 2(d)) our objective function. The term

objective function refers to the quantity we aim to approximate. Mathematically, we denote our

objective function as 𝑔 : 𝑅𝑑 → 𝑅𝑐 , and its approximate reconstruction as 𝑔. For ADGI, we have

two objective functions - the light field 𝑔𝑟 : 𝑅5 → 𝑅3, and Chebychev-visibility 𝑔𝑐 : 𝑅5 → 𝑅2

surrounding the probes. We denote their approximate reconstructions as the irradiance cache 𝑔𝑟 ,

and the visibility cache - 𝑔𝑐 respectively. See section 4.5 and 4.6 for more details.

Updating ĝ: We evaluate the continuous objective function 𝑔 at collected sample points 𝑥𝑖 and

store the evaluations - 𝑔(𝑥𝑖 ) into 𝑔, as shown in algorithm 2. For ADGI, the evaluation step involves

7



High Performance Graphics, Poster, July 11–14, 2022, Datta et al.

Algorithm 2: Approximation algorithm

Input: 𝑥 : Markov-chain samples

1 function UpdateRepresentation(𝑥):
2 𝑣 ← 𝑔(𝑥) // Evaluate sample, ray-trace

3 AtomicMovingAvg(𝑥, 𝑣) // Populate 𝑔, see algorithm 4

tracing a ray to query the local light field and visibility. At each Metropolis iteration, the evaluated

samples update the closest entry in the probes (𝑔) within a critical section construct.

Representing ĝ: Prior work represent 𝑔 as either as discrete LUTs [28], continuous Spherical

Harmonics [14], Neural Networks [36], or any combination. In our case, the choice to use a discrete

representation is based on several factors. First, multiple parallel streams of Markov-chain samples

may update the same memory location in 𝑔. As such, provisions are necessary to prevent race

conditions. We also need a representation that handles temporal accumulation and quickly update

itself to reflect any transient changes in the scene. Finally, the representation must be bandwidth

efficient to improve the read and write performance. We refer to section 4.5 and 4.9 for details.

3.5 MCMC analysis
In this section, we analyze our adaptive sampling algorithm in the context of MCMC (Markov

Chain Monte Carlo). Note that our goal is not variance reduction through importance sampling;

rather the focus is guided approximation of the objective function via sampling the target function.

As such, unlike importance sampling, the sampling function is not necessarily correlated to the

integrand. With this distinction in mind, we first look at the equation driving importance sampling

using MCMC and then repurpose it for guided function approximation.

The following equation shows a typical case of importance sampling where the objective is to

compute the integral

∫
ℎ(𝑥)𝑔(𝑥)𝑑𝑥 and there exists a strategy to sample from h(x). In many typical

scenarios (e.g. full Bayesian inference), the distribution ℎ(𝑥) is a proper distribution (

∫
ℎ(𝑥)𝑑𝑥 = 1)

but does not have an efficient sampling mechanism. This where Markov Chain MC is useful.∫
ℎ(𝑥)𝑔(𝑥)𝑑𝑥 ≈

{
1

𝑀

𝑀−1∑︁
𝑖=0

𝑔(𝑥𝑖 )
} ∫

ℎ(𝑥)𝑑𝑥, 𝑥𝑖 ∼ ℎ(𝑥). (3)

In contrast, our choice of Markov Chain (Metropolis) is primarily technical - simplicity, GPU

parallelism and temporal sample tracking. Nevertheless, the same equations provide meaningful

insight - albeit in a different context of adaptive sampling. In our algorithm, we simply sum the

samples obtained from the target distribution without taking into account the sample density. This

is equivalent to computing the following:

𝐼 =
1

𝑀

𝑀−1∑︁
𝑖=0

𝑔(𝑥𝑖 ), 𝑥𝑖 ∼ ℎ(𝑥). (4)

While our goal is to estimate

∫
Ω
𝑔(𝑥)𝑑𝑥 , the expectation of 𝐼 (rearranging equation 3) is:

E [𝐼 ] =
∫
Ω
ℎ(𝑥)𝑔(𝑥)𝑑𝑥∫
Ω
ℎ(𝑥)𝑑𝑥

, (5)

where Ω is the domain of integration. Clearly, the expected value of 𝐼 does not converge to the

correct estimate -

∫
Ω
𝑔(𝑥)𝑑𝑥 . However, there are two factors to consider - size of the domain Ω and
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shape of ℎ(𝑥) in the domain. First consider the limit case where Ω → 0. In this case, the integrals

collapses to a point evaluation and indeed the expected value of 𝐼 equals the unbiased estimate as

shown below.

𝐿.𝐻 .𝑆 . = lim

Ω→0

∫
Ω
ℎ(𝑥)𝑔(𝑥)𝑑𝑥∫
Ω
ℎ(𝑥)𝑑𝑥

=

∫
Ω
ℎ(𝑥)𝑔(𝑥)𝛿 (𝑥 − 𝑥0)𝑑𝑥∫
Ω
ℎ(𝑥)𝛿 (𝑥 − 𝑥0)𝑑𝑥

= 𝑔(𝑥0). (6)

𝑅.𝐻 .𝑆 . = lim

Ω→0

∫
Ω
𝑔(𝑥)𝑑𝑥 =

∫
Ω
𝑔(𝑥)𝛿 (𝑥 − 𝑥0)𝑑𝑥 = 𝑔(𝑥0). (7)

In the above equation, 𝛿 is the Kronecker delta. The result is important as it shows with increasing

probe resolution, bias is reduced. However, reducing texel size is not always practical as more rays

and memory are required to populate and store a high resolution probe. Notice how the term ℎ(𝑥)
is cancelled in equation 6. When the domain of integration is sufficiently small, ℎ(𝑥) is practically
constant and the term cancels out in the denominator and numerator.

We now consider the shape of ℎ(𝑥). While the target h(x) varies globally, it is piece-wise constant

at a local scale due to its tabular nature. More crucially, the target ℎ(𝑥) is stored at a much lower

resolution compared to the irradiance probe 𝑔(𝑥). This implies ℎ(𝑥) is practically constant across a

texel of the irradiance probe. The expected value of 𝐼 for the 𝑘𝑡ℎ texel is thus given by:

E [𝐼𝑘 ] =

∫
𝑇𝑘
ℎ(𝑥)𝑔(𝑥)𝑑𝑥∫
𝑇𝑘
ℎ(𝑥)𝑑𝑥

=

∫
𝑇𝑘
𝑐𝑘𝑔(𝑥)𝑑𝑥∫
𝑇𝑘
𝑐𝑘𝑑𝑥

=

∫
𝑇𝑘
𝑔(𝑥)𝑑𝑥∫
𝑇𝑘
𝑑𝑥

, (8)

where 𝑇𝑘 represents the domain of 𝑘𝑡ℎ texel and 𝑐𝑘 represents the piece-wise constant value of

ℎ(𝑥) when 𝑥 ∈ 𝑇𝑘 . The area estimate

∫
𝑇𝑘
𝑑𝑥 is fixed for all texels and equivalent to 4𝜋/#𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.

Thus, due to the tabular nature of our target function, the estimates of irradiance texels remain

un-biased. While performing texture filtering over irradiance texels, it is possible to compute an

unbiased estimate by weighing the texel values with 𝑐𝑘 as follows:

𝐼
𝑓 𝑖𝑙𝑡𝑒𝑟

𝑘
=

∑︁
𝑗 ∈N𝑘

𝑤𝑘−𝑗 𝐼𝑘−𝑗 , 𝑤𝑖 = 𝑐𝑖/
∑︁
𝑗 ∈N𝑘

𝑐 𝑗 , (9)

where N𝑘 represents the texels in the neighbourhood of texel 𝑘 . The values 𝑐𝑖 are obtained by

querying the probes storing ℎ(𝑥). Note that bias is unavoidable as we blend samples temporally

in a dynamic environment. In a dynamic environment, the objective is evolving and the bias

manifests itself as temporal lag. Practically however, within a small time window, both ℎ(𝑡) and
𝑔(𝑡) are assumed constant and the samples can be blended using a windowed moving average.

Note that windowed moving average requires storing historical information. A cheaper but biased

approximation to windowed moving average is exponential moving.

4 IMPLEMENTATION DETAILS
This section provides the several implementation details with a brief summary in figure 4.

4.1 Heuristics construction
The section describes the construction of 𝑓 using the heuristics discussed in section 3.2. Our goal is

to measure and quantify the heuristics that highlight the probes which actively contribute to the

final shading and require additional resources for faster convergence. We represent the heuristics

either parametrically (equation 10) or using an explicit LUT representation as shown in figure 5(a).

The LUT is constructed such that each probe has eight texels corresponding to an octant. We trace

a ray for each octant; the rays return the hit distance and incoming irradiance at the hit-point.

From this information, we compute several quantities (equation 11 - 18) and store them in the

9
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Fig. 4. This figure illustrates our overall algorithm. We trace 8 pilot rays, one from each octant on the probe

and approximate the heuristic model 𝑓 (𝑝,𝜔). Using the heuristic and feedback, we define the guide ℎ(𝑝,𝜔)
and sample it using Metropolis sampling. The sampled (𝑝𝑖 , 𝜔𝑖 ) are used to trace more adaptive ray samples,

gathering hit-distance and irradiance at the sample points. We update the probe-cache (𝑔) with adaptive-

samples. The cache is used in the next shader and also looped back as feedback to model the target.

LUT/texture mapped to the probe octants. We define and evaluate the following heuristics for a

probe at position 𝑝 and a direction 𝜔 .

4.1.1 Distance from camera. A probe far away from the camera is less likely to contribute to the

final shading. We represent this parametrically as described in equation 10, where 𝑝 represents

probe position, 𝑐 camera position and 𝑘 is a threshold set by the user.

𝑓𝑐 (𝑝,𝜔) =
{
1 if | |𝑝 − 𝑐 | | < 𝑘 ,
𝑒−( | |𝑝−𝑐 | |−𝑘) otherwise.

(10)

4.1.2 Probe visibility. Only the probes encompassing a geometry participates in the deferred

shading. Thus, probes closer to a geometric surface are more important. Similarly, texels facing

away from the surface are queried more often for shading. We express both quantities together in

equation 11, where 𝑝 represents probe location and 𝑡 = 𝑡𝑟𝑎𝑐𝑒 (𝑝,−𝜔). The function trace returns
the distance of the nearest surface hit, and the scalar 𝑠 is the diagonal distance of a grid voxel.

𝑓𝑣 (𝑝,𝜔) = 𝑒−2𝑡/𝑠 (11)

4.1.3 Incoming radiance. We consider directions with high incoming radiance as more impor-

tant. To identify those directions, we query the radiance along each probe octant and use it as a

representative for incoming radiance.

𝑓𝑟 (𝑝,𝜔) =
𝑚𝑖𝑛(𝑟, 𝛽)

𝛽
, (12)

where 𝑟 = 𝑙𝑢𝑚(𝑝,𝜔). The function lum returns the incoming luminance using direct illumination

at the surface hit point. The parameter 𝛽 controls the dynamic range and we set 𝛽 = 5.

4.1.4 Probe visibility change . Detection of dynamic geometry is crucial for increased resource

allocation in regions affected by these changes. We detect dynamic geometry by computing a

temporal gradient of probe visibility followed by a spatio-temporal smoothing operation.

𝑓0 (𝑝,𝜔) = 𝑓 𝑡𝑣 (𝑝,𝜔) − 𝑓 𝑡−1𝑣 (𝑝,𝜔), (13)

where 𝑓 𝑡𝑣 , 𝑓
𝑡−1
𝑣 represent visibility in the current and last time step respectively. Equation 13

implicitly states we keep the position and the direction fixed when measuring the time difference

across frames to avoid noisy gradients. The gradient is passed through a temporal trigger (𝑇𝑟 ) as:

10
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a. Probes storing prior-information (𝑓 ).

octant-mapped

pilot-rays

b. Irradiance cache (𝑔𝑟 ). c. Visibility cache (𝑔𝑐 ).

Fig. 5. Figure showing various probe-mapped textures and LUT in our technique.

𝑓1 (𝑝,𝜔) = 𝑇𝑟 (𝑓0 (𝑝,𝜔), \ ) , (14)

where 𝑇𝑟 converts a pulse in time to a decaying signal controlled by the parameter \ as shown

in figure 6(a). For simplicity, we drop the time axis from the function 𝑇𝑟 . The function minimizes

temporal discontinuities, thus helping the Markov-chain to closely follow the target distribution

(ℎ) across frames. Finally, we perform a spatial convolution as follows:

𝑓Δ𝑣 (𝑝,𝜔) =
∑︁
𝑖, 𝑗

𝑓1 (𝑝 − 𝑝𝑖 , 𝜔 − 𝜔 𝑗 ). (15)

The convolution step smooths out uncertainties in a single texel and also serves as a weak

predictor of possible locations of the dynamic geometry in the next frame. We use a 5 × 5 × 5 and
3 × 3 convolution in space and direction, respectively.

4.1.5 Probe radiance change. Similar to the previous section, we detect a change in radiosity

using a temporal gradient of the probe radiance. We apply the same temporal trigger and spatial

convolution operator as in the previous section. The corresponding equations are as follows:

𝑓2 (𝑝,𝜔) = 𝑓 𝑡𝑟 (𝑝,𝜔) − 𝑓 𝑡−1𝑟 (𝑝,𝜔), (16)

𝑓3 (𝑝,𝜔) = 𝑇𝑟 (𝑓2 (𝑝,𝜔), \ ) , (17)

𝑓Δ𝑟 (𝑝,𝜔) =
∑︁
𝑖, 𝑗

𝑓3 (𝑝 − 𝑝𝑖 , 𝜔 − 𝜔 𝑗 ). (18)

4.2 Heuristics composition
Now that the individual heuristics are defined, as described in equation 1, we compose them for

the static and dynamic cases as follows:

𝑓𝑠 (𝑝,𝜔) =

𝑠𝑡𝑎𝑡𝑖𝑐︷︸︸︷
𝑓𝑐 𝑓𝑣 ,

(19)

𝑓𝑑 (𝑝,𝜔) =

𝑑𝑦𝑛𝑎𝑚𝑖𝑐︷              ︸︸              ︷
𝑓𝑐 𝑓𝑣 (𝑓Δ𝑣 + `𝑓Δ𝑟 ) .

(20)

When the environment is static, we sample according to the camera and probe-to-surface distance

heuristics denoted by 𝑓𝑐 and 𝑓𝑣 in equation 19. In the dynamic case represented by equation 20, we

modulate the changes in the environment by the static term 𝑓𝑐 𝑓𝑣 . The modulation indicates we are

more interested in changes close to the camera and geometric surfaces. The factor ` weighs the

strength of change in geometry versus change in lighting. We use ` = 2 in all our experiments.

11
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|𝑐𝑙𝑖𝑝𝑥𝑦 | ≤ 1.2 |𝑐𝑙𝑖𝑝𝑥𝑦 | ≤ 1.4

b. Defining clip volumes for probes.

Fig. 6. Figure (a) shows the construction of temporal-trigger𝑇𝑟 (𝑣, \ ). In figure (b), we call the volume bounded

by the blue frustum and black boundary as inner volume 𝑉𝑖𝑛 . Similarly, outer volume 𝑉𝑜𝑢𝑡 is the volume

bounded by green frustum and outer grey boundary. All probes in 𝑉𝑜𝑢𝑡 participate in the heuristic modelling,

as described in section 4.4. Probes inside the blue frustum participate in adaptive sampling as described in

section 4.8, 4.9. We set the probe state 𝑁 = 16 for all probes outside 𝑉𝑖𝑛 but inside 𝑉𝑜𝑢𝑡 , refer section 4.8.

4.3 Heuristics storage
We store the quantities 𝑓𝑣, 𝑓𝑠 , 𝑓𝑑 as a 6-10-10 bit encoded 32 bit integer at each octant of the probes.

The remaining 6 bits are used for other flags. When querying the LUT/texture, we use a mapping

function that maps the continuous position 𝑝 and direction 𝜔 to the corresponding texel in the

LUT. We note that 𝑓𝑐 is implicitly defined, hence do not require additional storage.

4.4 Improving construction efficiency
The heuristics construction step is a potential bottleneck if we trace 8 rays per probe for all probes

in the scene. As such, we restrict the pilot-rays to the probes that are contained within an extended

camera frustum as shown in figure 6(b). To maximize the efficiency of our algorithm, we further

reuse the samples collected from the 8 pilot-rays to populate the irradiance (𝑔𝑟 ) and visibility (𝑔𝑐 )

caches. We change the ray-directions at alternate frames in an AABBCCDD... pattern, improving

the detection of temporally varying light-field surrounding the probes. We measure the time-delta

(equation 13 and 16) between two frames with identical set of ray-queries, avoiding noisy gradients.

However, this effectively halves the detection frequency (frame-rate / 2) but improves the spatial

awareness. We use a stratified-random ray-direction such that there is always one ray per octant.

We update the irradiance and visibility cache at each alternate frame.

4.5 Probe irradiance cache
As shown in figure 5(b), the irradiance cache (𝑔𝑟 ) is represented as a uniform probe grid in space

where each probe stores the surrounding diffuse irradiance at a 8 × 8 texel resolution using a

spherical mapping. At each texel, we store the irradiance in a custom RGB encoding with 9-9-8 bits

for the three channels. The remaining 6 bits (out of 32bit) store the sample accumulation count

(N), used for computing the moving average (see algorithm 3) of a sample stream in time. We

take several considerations into account for the choice of our encoding. Our encoding should be

bandwidth efficient and must support atomic updates on a commodity GPU. We found both DX12

and GLSL supports atomic operations on 32 bit integers. Finally, our encoding must faithfully

12
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Algorithm 3:Moving Average algorithm

Input: 𝑥 : Update location, 𝑣 : New sample, 𝑁𝑚𝑎𝑥 : Max sample count

Output: 𝑉 : Updated value, 𝑁 : Sample count

1 function MovingAvgUpdate(𝑥 , 𝑣 , 𝑁𝑚𝑎𝑥):
2 𝑛 ← 𝑔[𝑥] .𝑁 // Cumulative sample count

3 𝑜 ← 𝑔[𝑥] .𝑉 // Cumulative value

4 𝑉 ← 𝑣
𝑛+1 +

𝑛 ·𝑜
𝑛+1 // Update cumulative value

5 𝑁 ←𝑚𝑖𝑛(𝑛 + 1, 𝑁𝑚𝑎𝑥 ) // Increment sample count

6 return 𝑉 , 𝑁

encode intensities beyond the standard definition. We apply a non-linear color compression across

the three color channels, 𝑖 ∈ [0..2] as shown in the equation below.

𝑢𝑖 =
𝑚𝑖𝑛 (𝑙𝑛(𝛾 · 𝑣𝑖 + 1), 𝛽)

𝛽
. (21)

We apply an inverse transform (𝑒𝑥𝑝 (𝛽 · 𝑢𝑖 ) − 1) /𝛾 while decoding where 𝛽 = 5 and 𝛾 = 15.

More details regarding our choice of compression scheme is provided in appendix B and figure 11.

4.6 Probe visibility cache
As shown in figure 5(c), texels in the visibility probes store the mean distances and mean squared

distances to the nearest geometry at 16x16 texel resolution. We call this 𝑔𝑐 - our visibility cache.

Each texel stores the two channels with 13 bits of precision each while the rest 6 bits are used for

sample accumulation count. We normalize the distances with probe cage diagonal length. Similar to

irradiance cache, we apply a logarithmic encoding as per equation 21 for efficient use of available

precision. We use (𝛽,𝛾) values of (5, 15) and (8, 20) for the linear and squared channels respectively.

4.7 Temporal sample accumulation mecahnism
Weuse amoving-average accumulation to store the samples in the irradiance and visibility caches. In

the algorithm 3, we have two parameters 𝑁 and 𝑁𝑚𝑎𝑥 to control the moving-average accumulation.

As we start accumulating samples, 𝑁 is incremented and the algorithm performs like a true moving

average. However, as 𝑁 approaches 𝑁𝑚𝑎𝑥 − 1, the algorithm switches to an exponential moving

average form with hysteresis (𝑁𝑚𝑎𝑥 − 1)/𝑁𝑚𝑎𝑥 . Also, note that when the value of 𝑁 is low, the

cache updates itself quickly, but the stored values may be noisy. As 𝑁 increases, the new samples

are weighed less in their contribution to the cache. We exploit these parameters to control the

learning rate and noise in the static and dynamic cases as discussed in the following sections.

4.8 Adaptive sampling - static
We split our adaptive sampling strategy into two stages - static and dynamic. We have two separate

Markov-chain sets, each focusing on different aspects of capturing the surrounding light-field.

While the static chain focuses more on the accuracy, the dynamic chain is tuned for capturing the

transient responses. We discuss the dynamic chain in detail in the next section.

We set up equation 2 as - ℎ = 𝑒𝑥𝑝 (𝑚𝑖𝑛(𝑔𝑟/𝑓𝑠 , 1)) · 𝑓𝑠 . The feedback from irradiance cache 𝑔𝑟 is

obtained from the previous frame and from a higher mip-level (also used in deferred shader). The

lowest mip-level 𝑔𝑟 is continuously updated and thus avoided as feedback due to possible violation

of stationarity condition within a frame. We use the Metropolis sampling, algorithm 1, to generate

the samples 𝑥𝑖 ≡ (𝑝𝑖 , 𝜔𝑖 ). As summarized in the algorithm, 2, we use the samples to evaluate the
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Algorithm 4: Atomic moving average algorithm

Input: 𝑥 : Update location, 𝑣 : New update value

Output: Update 𝑔[𝑥]
1 function AtomicMovingAvg(𝑥 , 𝑣):
2 current← 𝑔[𝑥]

/* Repeat until destination value stops changing */

3 do
4 expected← current

5 next←MovingAvgUpdate(𝑥, 𝑣, 64)
6 InterlockedCompareExchange(𝑔[𝑥], expected, next, current) // Refer HLSL

7 while current ≠ expected

continuous light field 𝑔𝑟 , which involves tracing a ray originating at 𝑝𝑖 along the direction 𝜔𝑖 .

We trace an additional shadow-ray per sample to compute the visibility in the opposite direction

(−𝜔𝑖 ) as the probe queries in the deferred shader for visibility is exactly 180
◦
out of phase w.r.t

irradiance. Next we store the irradiance and visibility values in the irradiance (𝑔𝑟 ) and visibility (𝑔𝑐 )

caches using an atomic update rule as presented in the algorithm 4. Atomic updates are required

as multiple invocations of the chain may update the same location in the irradiance and visibility

caches. Figure 4 summarizes the overall idea.

We set the random walk step size, denoted by 𝜎 ∈ 𝑅5 in algorithm 5, proportional to the size of

discretization in the irradiance and visibility cache. Thus positional step size is proportional to the

size of a voxel in the probe grid, while angular step size is roughly

√︁
𝜋/256. Due to the small step

size, texels in the cache may accumulate more than one sample per texel, thereby accumulating

a large sample count over time. We also note that our cache behaves like a true moving average

between sample count 𝑁 = 0 to 64, which also contributes to better accuracy.

The static adaptive samples are useful for improving convergence in a static scene and for slow

changes that are undetected during prior construction. For example, slow changes in lighting such

as day-night cycles in games. We lower the hysteresis by setting 𝑁 = 16 for all probes in the region

{𝑉𝑜𝑢𝑡 } − {𝑉𝑖𝑛} in figure 6(b). This enables the probe to quickly catch-up to the most recent values.

4.9 Adaptive sampling - dynamic
We run a second set of Markov-chain when dynamic content is detected in the scene. When there

are dynamic elements, especially moving geometry, we run into two main issues. The generated

samples are not well distributed in the region of interest i.e. the areas where time varying changes

are present. When the step size is small, the chain cannot track the target distribution fast enough

to generate samples from the target, causing the samples to lag the moving target distribution.

The second problem is noise due to multi-sampling of the irradiance texel. Potentially, this can be

solved by increasing the hysteresis to improve temporal sample reuse. However, the reduced noise

comes at the cost of introducing objectionable temporal blur.

We solve the first issue by increasing the chain step size and by coarsening the target function

(𝑓𝑑 ). Practically, this amounts to grouping the heuristics-probes into virtual proxies. In our case, a

virtual proxy represents a group the 3 × 3 × 3 probes. This virtual probe has 8 directions and each

direction represents an axis-aligned octant. The value of a texel of the virtual probe is the max of

all 27 probes it represents along the corresponding direction. We also drop the sampled evidence

by setting 𝛼 = 0 in equation 2, as the stale irradiance cache (𝑔𝑟 ) provide little useful information for
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Table 2. Table showing probe grid details for various scenes used in our technique.

Scene Probe Grid

Probe spacing

(in meters)

Irradiance (𝑔𝑟 )

Cache Resolution

Visibility (𝑔𝑐 )

Cache Resolution

Bistro - Exterior 192 × 64 × 192 0.5 × 0.5 × 0.5 8 × 8 16 × 16
Sponza - Diffuse 192 × 64 × 192 0.5 × 0.5 × 0.5 8 × 8 16 × 16
Sponza - Glossy 192 × 64 × 192 0.1 × 0.1 × 0.1 16 × 16 16 × 16

Table 3. Table showing probe encoding details for the various techniques we use in our comparison.

Technique

Irradiance

Cache Encoding

Visibility

Cache Encoding

Temporal

Hysteresis

Ours ⌊R9⌋ ⌊G9⌋ ⌊B8⌋ − N [R13] [G13] − N Static: 0.98 (𝑁𝑚𝑎𝑥 = 63)

Dyna: 0.91 (𝑁𝑚𝑎𝑥 = 10)

Q-DDGI ⌊R11⌋ ⌊G11⌋ ⌊B10⌋ − N [R16] [G16] − N 0.94

Reference RGB32f RG32f N/A

sampling a time varying region. The chain step size is 3x, and 6x larger for position and directions,

respectively w.r.t the static case.

Since each sample from the coarse chain represents an entire octant, we trace 64 rays for the

octant for all underlying 3x3x3 probes in the group. We make the tracing step more efficient by

culling probes that are not used in deferred shading. The scheduling of ray-direction is deterministic,

passing through the center of a texel in the irradiance cache (𝑔𝑟 ). This solves the problem of sampling

noise and also affords the opportunity to simplify the atomic updates. Since the rays are not random,

we do not benefit from multiple shader invocations updating the same octant. As such, the first

invocation to update the octant marks (atomically) it updated such that other invocations do not

repeat the same work move to the next.

We run the dynamic sampling after the static sampling step. During static sampling, if a probe

has non-zero dynamic component(𝑓𝑑 > 0), we quantize the ray directions to go through the

irradiance/visibility cache texel center to avoid injecting sampling noise in the texels.

5 RESULTS AND COMPARISONS
We compare our results with Q-DDGI and a reference probe-based implementation in different

scenarios - static scene (fig. 7), dynamic geometry (fig. 1, 8, 10), and dynamic lighting (fig. 9).

Q-DDGI: Quantized-DDGI or Q-DDGI is a performance enhanced extension of original DDGI

[28], achieved without major modifications to the base algorithm. Q-DDGI is equipped with a more

compact irradiance and visibility cache representation that closely resembles ours. See table 3. We

also enable camera-frustum culling of probes in Q-DDGI as described in section 4.4 and figure 6.

These modifications allow Q-DDGI to have similar performance (table 4) at same probe count (table

2) as ours across different scenes. We believe these modifications make our comparisons more fair.

We use 32 rays per probe for a total ray budget of 800-1600k (depending on scene) rays per frame.

Reference: Reference implementation uses a standard FP32 representation for irradiance and

visibility caches as shown in table 3. We also use a higher resolution 32× 32 irradiance and visibility
cache. Due to memory constraints, we are limited to a smaller probe-grid of size 32 × 32 × 32 using
same probe spacing (table 2) as other techniques. For each frame, we discard any previous values

in the probes and accumulate samples using a true-average with 64 rays per texel.

Ours: We use 4096 instances of static chain invocations and 1024 instances of dynamic chain

invocations. Overall, we use use between 500-900k (depending on scene) rays per frame.
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Table 4. Performance breakdown of our technique and Q-DDGI. Our probe sampling stage is divided into

three sub-stages - heuristic construction (P), static adaptive sampling (S), and dynamic adaptive sampling (D).

Scene

Ours (in milliseconds) Q-DDGI (in milliseconds)

Probe Sampling

(P + S + D)

Deferred Total Probe sampling Deferred Total

Bistro - Exterior

4.01 + 2.23 + 4.73

= 11.0

4.63 15.6 22.3 4.47 26.8

Sponza - Diffuse

1.21 + 1.85 + 3.18

=6.24

3.62 9.86 9.69 3.51 13.2

Sponza - Glossy

4.83 + 2.11 + 4.33

=11.27

6.44 19.7 24.9 6.71 31.6

Figure 1 and 8 shows a large scene (Bistro Exterior), with the tunnel’s entry and exit modified

with dynamic gates. The tunnel interior walls are illuminated by indirect illumination alone,

controlled by the direct light bouncing off the floor. The direct illumination on the floor is controlled

by the dynamic entry gate. The scene tests the tracking capabilities of our algorithm; the dynamic

Markov-chain should sample the probes close to the moving door. The scene also tests our color

compression scheme under low-light and moving-average accumulation.

Figure 9 shows the Sponza scene under dynamic lighting, testing the detection capabilities of

ADGI in the absence of dynamic geometry. Figure 7 shows a static scene without dynamic geometry

or lighting, testing the convergence of our static adaptive sampling when no dynamism is detected

or the dynamic changes are too slow to detect, such as day-night cycles in games.

Figure 10 shows a dynamic geometry (Stanford Buddha) under glossy indirect illumination

with ambient lighting as direct component. The scene is stressful as the camera frustum contains

many times more probes compared to other scenes due to the increased probe density required

for glossy illumination. This scene tests the transient response of a dynamic geometry on a glossy

floor. Thus the scene is less forgiving of spatio-temporal blurring.

Wemeasured the results on a desktopwith Nvidia 2080Ti GPU andAMD 5600XCPU at 1920×1080
resolution. The performance numbers cited in table 4 are only for ADGI and Q-DDGI algorithms.

The GBuffer and direct-illumination passes require an additional 2ms and 3ms, respectively.

6 LIMITATIONS
We inherit similar limitations as the vanilla DDGI algorithm. The probe visibility from a shade-point

is only approximate and requires modifications such as probe movement to minimize light leakage.

The probe representation is not efficient in capturing glossy light-transport and requires a dense

spatio-angular discretization of irradiance cache to capture glossy reflections.

Accurate detection of transient spatio-temporal changes in a scene are difficult. The accuracy of

detecting dynamic geometry reduces with the distance of the dynamic object from a probe. The

same is true for dynamic lighting; especially high frequency localized lighting that is far from a

probe is difficult to detect. Also, for the Markov chain to track the target distribution, the speed

of motion should be capped comparable to the product of Markov-chain step size and average

frame-rate. While many game engines keep track of the dynamic objects, facilitating the detection

of changing in visibility, we still need ray-tracing to detect dynamic radiosity.

7 CONCLUSION
Our adaptive sampling approach improves upon the efficiency of the original DDGI algorithm. Our

approach non-uniformly allocates resources in regions with time varying phenomena and captures

16



Adaptive Dynamic Global Illumination High Performance Graphics, Poster, July 11–14, 2022,

transient localized changes in an environment containing millions of probes. By contrast, DDGI’s

uniform allocation policy dilutes resource concentration in critical regions, especially when a large

number of probes are present. These improvements reduce temporal lag and minimizes reliance on

temporal blur to reduce noise. Our probe encoding scheme minimizes memory requirements by 4x

(and by extension memory bandwidth) with minimal impact on quality while also enabling millions

of probes in a scene. Our adaptive sampling stages have a fixed upper bound on the compute

requirement and also decouples sampling from the number of probes, further reducing memory

bandwidth requirement. These changes enable improved probe-based rendering while also enabling

1.5-2x performance improvements.

8 RELATEDWORK EXTENSION
Irradiance caching Irradiance caching is another line of techniques attempting to overcome

the high computation cost of GI. The irradiance caching method assumes that irradiance vary

smoothly across the scene, and texture detail can be recovered using albedo modulation [64]. The

interpolation and location of the various cache records is a critical, especially when the assumptions

on smoothness do not hold. While robust, principled offline solutions exist [16, 24], real-time

applications often resort to complex heuristics and impose harsh constraints to achieve online

GI. Compression [56], sparse interpolation [49], pre-convolved environment maps [42, 45], spatial

hashing [3] and using neural network [37] are instances of advancements in real-time irradiance

caching. Although these approaches aim for real-time performance, their complexity and constraints

make them challenging to implement and deploy.

Path tracing The flexibility and generality offered by path tracing [18] is highly desirable for

real-time rendering. However, path tracing has been out of reach for real-time applications due to its

substantial computational requirements. Even with the advent of hardware-accelerated ray tracing

[23], it is only possible to trace a few tens of rays at each pixel in real-time. Therefore, effective

sampling strategies and high-quality denoising algorithms [38, 46, 47] are essential. Many sampling
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Fig. 7. Comparing the convergence of our technique over time on a static Bistro Exterior scene. The figure

demonstrates the effectiveness of our static adaptive sampling step. The two rows measure the difference in

luminance w.r.t reference and highlight the error in red and green color.
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Fig. 8. Our technique compared with Q-DDGI on a modified Bistro Exterior scene augmented with a

moving door. The scene has 192 × 64 × 192 probes and shows the convergence of the two techniques near

a dynamic area in the scene. The second row shows the changes inside the tunnel as the door closes over

time. Our technique is better able to allocate the resources closer to the dynamic areas resulting in faster

convergence and higher performance.

methods try to learn the representation of incident illumination during rendering [1, 8, 34, 44, 60].

While these approaches can provide substantial error reduction, constructing these structures in

parallel on a GPU incurs a significant overhead that seem unsuitable for real-time applications.

Recently proposed ReSTIR GI [41] provides an efficient real-time sampling strategy by reusing the

paths spatially and temporally but the algorithm becomes complicated after second bounce and still

requires denoising for the final stage. Deep learning has also been applied to path guiding, including

work by [35, 36]. These approaches demonstrated a substantial reduction in error due to more

effective path sampling, though their performance remain insufficient for real-time applications.

Screen space approaches: Approximating physically plausible illumination at real-time frame

rates with screen space methods is popular in games. Screen space methods are fast, GPU-friendly,

and simple to implement. Screen space ambient occlusion (SSAO) [2, 33] is part of many real-time

rendering engines. Following SSAO, screen Space Directional Occlusion (SSDO) [43] is used for

near-field direct and indirect diffuse lighting. Sousa et al. [52] proposed Screen Space Reflections

(SSR) using a 2D ray-tracing approach directly in screen space to obtain the indirect specular

component. Recently Screen-Space Global Illumination (SSGI) [43, 50, 52] methods offer a viable

solution to real-time GI. However, these methods are limited by the information visible from the

observer’s position, thus making it difficult to engineer a robust solution.

Importance sampling and Bayesian modeling: Importance sampling provides a tool to

reduce the cost of brute force integration by selectively evaluating elements of the integrand based

on prior knowledge, i.e. an educated guess. Previous works in importance sampling proposed

different methods to apply importance sampling to various Monte-Carlo integration existing in

rendering equations [21, 48, 57]. Although Markov Chain Monte Carlo(MCMC) methods have been

used in Bayesian learning from the early days of neural networks [39], and Stochastic-Gradient

MCMC has been proposed [65] with various applications [25], our approach is neither Monte

Carlo-based nor Neural-network learning. We exploit Bayesian inference and Markov Chains as our

mathematical means to sample the important texels on the probe, by defining our guide function

(prior), likelihood, and posterior.
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Fig. 9. Figure comparing the convergence of our technique under dynamic lighting controlled by the direct

component shown in the first row. The last two rows measure the difference in luminance w.r.t reference and

highlight the error in red and green color.

Markov Chain: Markov Chains are used broadly in Monte Carlo path-tracing. For example,

Veach and Guibas [58] used Metropolis Sampling to explore the space of all possible paths. Kelemen

et al. [19] later applied the exact sampling in the space of random numbers, i.e., in Primary Sample

Space. The most recent work by Bitterli et al. [4] combines a simple path tracing integrator with

MCMC by using the random seeds of high variance paths as starting points for the Markov Chains.

Although Markov Chains are encountered extensively beneficial in solving Monte Carlo sampling,

our point of view on sampling and employing the Markov Chain to draw samples from the guide

function is distinct.
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Fig. 10. Figure comparing glossy indirect reflection on a scene lit by ambient lighting. The scene tests transient

response due to the moving Buddha geometry over a glossy floor.

Bayesian inference: Bayesian modeling is a widespread methodology in computer vision and

graphics. Brouillat et al. [5] and Marques et al. [30] pioneered the use of Bayesian Monte Carlo

(BMC) [11] in light transport simulation. In contrast, [59] keep the efficient classic, frequentist

MC approach and apply Bayesian modeling to optimize their sampling distributions for direct

illumination estimates across the scene. Similar approach is used by Vorba et al. [61], who employ

a maximum a posteriori (MAP) formulation to regularize training of parametric mixture models for

optimized indirect illumination sampling. Our approach uses Bayesian modeling in the context of

light-probes to detect important probes and directions based on sampled evidence.
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A METROPOLIS-HASTINGS
Markov Chain Monte Carlo (MCMC) allows sampling from the posterior without computing

the marginal. [10]. Metropolis-Hastings (Metropolis), which we exploit in this work, is a specific

implementation of MCMC [7]. The Metropolis–Hastings algorithm can draw samples from any

probability distribution with probability density 𝑃 (𝑥), provided a function ℎ(𝑥) proportional to
the density 𝑃 (𝑥). The Metropolis algorithm works by generating a sequence of sample values so

that, as more samples are produced, the distribution of samples more closely approximates the
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desired distribution. These sample values are produced iteratively, meaning the next sample being

dependent on the current sample (thus making the sequence of samples into a chain). Let ℎ(𝑥)
be a function that is proportional to the desired probability density function 𝑃 (𝑥) (a.k.a. a target
distribution). The Metropolis Markov Chain algorithm with random walk is defined as follows:

Algorithm 5: Random-walk algorithm

Input: 𝑥𝑖 : Current state, 𝑦𝑖 : Probability of current state

Input: 𝜎 : Step size or std-dev of Gaussian noise

Output: 𝑥𝑖+1: Next state, 𝑦𝑖+1 : Probability of next state

1 function RandomWalk(𝑥𝑖 , 𝑦𝑖):
2 𝑥𝑖+1 ← 𝑥𝑖 + N(𝜎) // Propose a new state

3 𝑦𝑖+1 ← ℎ(𝑥𝑖+1)
4 ` ← min

{
𝑦𝑖+1

𝑦𝑖
, 1

}
// Compute acceptance ratio

5 𝜖 ∼ 𝑈 (0, 1) // Sample uniform distribution

6 if 𝜖 > ` then
/* Reject proposed state */

7 𝑥𝑖+1 ← 𝑥𝑖

8 𝑦𝑖+1 ← 𝑦𝑖

9 return 𝑥𝑖+1, 𝑦𝑖+1

Initialization: Choose an arbitrary point 𝑥𝑖−1 as the initial observation in the sample-space and

choose an arbitrary probability density N(𝑥𝑖 | 𝑥𝑖−1) that suggests the next sample candidate 𝑥𝑖 ,

given the previous sample value 𝑥𝑖−1. In our work, N is assumed to be symmetric. A usual choice

is to let N(𝑥𝑖 | 𝑥𝑖−1) be a Gaussian distribution centered at 𝑥𝑖−1, so that points closer to 𝑥𝑖−1 are
more likely to be visited next, making the sequence of samples resemble a random walk [7]. The

random walk algorithm is described in algorithm 5.

B PROBE COMPRESSION
We tested several 26-bit encoding and settled on a non-linear RGB encoding represented by

⌊R9⌋ ⌊G9⌋ ⌊B8⌋ −N in figure 11. In this encoding, the RGB color is first passed through a logarithmic

non-linearity as per equation 21 such that the quantization errors are distributed evenly across

intensities. We perform a round-to-lowest-integer (⌊⌋) quantization for all channels, although round-
to-nearest-integer ([ ] ) is more accurate. Our quantization scheme ensures the moving-average

updates produce dark colors when the intensity of new samples are low. In a round-to-nearest set-
ting, due to a round-up error, the colors may never go to zero. Interestingly, YCbCr encoding allows

round-to-lowest for the Y channel and round round-to-nearest for Cb and Cr channels, however,

they perform poorly in both luminance and color preservation metrics as shown in figure 11.

The parameters in equation 21 are obtained by performing a grid search minimizing the recon-

struction error w.r.t RGB32f reference across various color and intensity combinations as shown in

figure 11. Luminance error is the r.m.s. value of the difference between the two color-maps. Color

accuracy is measured using a normalized dot product between the two flattened color-maps.
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Fig. 11. Figure comparing 26-bit color encodings on slices of the 3D color-space with dynamic range. We

compare the reconstruction error measured in Luminance and Color Correlation with RGB32f reference. The

log-non-linear encodings marked with - N suffix shifts the bit error from lower to higher intensities - which

are less frequent in indirect illumination. ⌊⌋ and [ ] denotes round-low and round-nearest quantizations

respectively. * Color map visualizations are normalized.
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